针对实际电网电压中存在实时动态变化的谐波运行环境,提出电压源型并网变流器广义谐波下的滑模变结构直接功率控制(sliding-mode-based direct power control,SMCDPC)策略;其实施是针对所有次数谐波,该控制策略不需实时精确的电网谐波...针对实际电网电压中存在实时动态变化的谐波运行环境,提出电压源型并网变流器广义谐波下的滑模变结构直接功率控制(sliding-mode-based direct power control,SMCDPC)策略;其实施是针对所有次数谐波,该控制策略不需实时精确的电网谐波次数和相位检测,具有实际工程应用价值。在以往研究成果的基础上,建立了广义畸变电网环境中的并网电压源型变流器(grid-connected voltage-sourced converters,VSC)的完整数学模型,提出3种该运行环境下的控制目标:正弦形输出电流,消除有功功率波动和无功功率波动。完成了滑模变结构直接功率控制设计。仿真结果表明,相比传统滑模变结构直接功率控制,改进的滑模变结构直接功率控制增强了电压源型并网变流器在实际电网广义电压谐波下环境中的运行能力。展开更多
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame...The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.展开更多
Direct adaptive fuzzy sliding mode control design for discrete non-affine nonlinear systems is presented for trajectory tracking problems with disturbance. To obtain adaptiveness and eliminate chattering of sliding mo...Direct adaptive fuzzy sliding mode control design for discrete non-affine nonlinear systems is presented for trajectory tracking problems with disturbance. To obtain adaptiveness and eliminate chattering of sliding mode control, a dynamic fuzzy logical system is used to implement an equivalent control, in which the parameters are self-tuned online. Stability of the sliding mode control is validated using the Lyapunov analysis theory. The overall system is adaptive, asymptotically stable, and chattering-free. A numerical simulation and an application to a robotic arm with two degrees of freedom further verify the good performance of the control design.展开更多
文摘针对实际电网电压中存在实时动态变化的谐波运行环境,提出电压源型并网变流器广义谐波下的滑模变结构直接功率控制(sliding-mode-based direct power control,SMCDPC)策略;其实施是针对所有次数谐波,该控制策略不需实时精确的电网谐波次数和相位检测,具有实际工程应用价值。在以往研究成果的基础上,建立了广义畸变电网环境中的并网电压源型变流器(grid-connected voltage-sourced converters,VSC)的完整数学模型,提出3种该运行环境下的控制目标:正弦形输出电流,消除有功功率波动和无功功率波动。完成了滑模变结构直接功率控制设计。仿真结果表明,相比传统滑模变结构直接功率控制,改进的滑模变结构直接功率控制增强了电压源型并网变流器在实际电网广义电压谐波下环境中的运行能力。
基金Project supported by the LEB Research LaboratoryDepartment of Electrical Engineering,University of Batna 2, Algeria。
文摘The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.
基金Project supported by the National Natural Science Foundation of China (No. 61304024), the Science and Technology Project of Hebei Province, China (No. 15272118), and the Fundamental Research Funds for the Central Universities, China (No. 3142015101)
文摘Direct adaptive fuzzy sliding mode control design for discrete non-affine nonlinear systems is presented for trajectory tracking problems with disturbance. To obtain adaptiveness and eliminate chattering of sliding mode control, a dynamic fuzzy logical system is used to implement an equivalent control, in which the parameters are self-tuned online. Stability of the sliding mode control is validated using the Lyapunov analysis theory. The overall system is adaptive, asymptotically stable, and chattering-free. A numerical simulation and an application to a robotic arm with two degrees of freedom further verify the good performance of the control design.