In this letter, the Clarkson-Kruskal direct method is extended to similarity reduce some differentialdifference equations. As examples, the differential-difference KZ equation and KP equation are considered.
Painleve property of the (2+1)-dimensional multi-component Broer-Kaup (BK) system is considered by using the standard Weiss Kruskal approaches. Applying the Clarkson and Kruskal (CK) direct method to the (2+1...Painleve property of the (2+1)-dimensional multi-component Broer-Kaup (BK) system is considered by using the standard Weiss Kruskal approaches. Applying the Clarkson and Kruskal (CK) direct method to the (2+1)- dimensional multi-component BK system, some types of similarity reductions are obtained. By solving the reductions, one can get the solutions of the (2+1)-dimensional multi-component BK system.展开更多
Using the direct method for a coupled KdV system, six types of the similarity reductions are obtained. The group explanation of the results is also given. It is pointed out that, in order to find all the results by no...Using the direct method for a coupled KdV system, six types of the similarity reductions are obtained. The group explanation of the results is also given. It is pointed out that, in order to find all the results by nonclassical Lie approach, two additional condition equations should be satisfied at the same time together with two original equations.展开更多
On bases of the direct method developed by Clarkson and Kruskal [J.Math.Phys.27 (1989) 2201],the(2+1)-dimensional nonisospectral Kadomtsev-Petviashvili (KP) equation has been reduced to three types of (1+1)-dimensiona...On bases of the direct method developed by Clarkson and Kruskal [J.Math.Phys.27 (1989) 2201],the(2+1)-dimensional nonisospectral Kadomtsev-Petviashvili (KP) equation has been reduced to three types of (1+1)-dimensional partial differential equations.We focus on solving the third type of reduction and dividing them into threesubcases,from which we obtain rich solutions including some arbitrary functions.展开更多
Basing on the direct method developed by Clarkson and Kruskal,the nonisospectral BKP equation can bereduced to three types of(1+1)-dimensional variable coefficients partial differential equations(PDEs).Furthermore,ont...Basing on the direct method developed by Clarkson and Kruskal,the nonisospectral BKP equation can bereduced to three types of(1+1)-dimensional variable coefficients partial differential equations(PDEs).Furthermore,onthe basis of the idea of the symmetry group direct method by Lou et al.,three types of reduction PDEs are all reducedto the related constant coefficients PDEs by some transformations.展开更多
The perturbed Kaup-Kupershmidt equation is investigated in terms of the approximate symmetry perturbationmethod and the approximate direct method.The similarity reduction solutions of different orders are obtainedfor ...The perturbed Kaup-Kupershmidt equation is investigated in terms of the approximate symmetry perturbationmethod and the approximate direct method.The similarity reduction solutions of different orders are obtainedfor both methods, series reduction solutions are consequently derived.Higher order similarity reduction equations arelinear variable coefficients ordinary differential equations.By comparison, it is find that the results generated from theapproximate direct method are more general than the results generated from the approximate symmetry perturbationmethod.展开更多
We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these...We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Oaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.展开更多
文摘In this letter, the Clarkson-Kruskal direct method is extended to similarity reduce some differentialdifference equations. As examples, the differential-difference KZ equation and KP equation are considered.
基金National Natural Science Foundation of China under Grant No.10735030Shanghai Leading Academic Discipline Project under Grant No.B412+1 种基金Natural Science Foundation of Zhejiang Province of China under Grant No.Y604056the Doctoral Foundation of Ningbo City under Grant No.2005A61030
文摘Painleve property of the (2+1)-dimensional multi-component Broer-Kaup (BK) system is considered by using the standard Weiss Kruskal approaches. Applying the Clarkson and Kruskal (CK) direct method to the (2+1)- dimensional multi-component BK system, some types of similarity reductions are obtained. By solving the reductions, one can get the solutions of the (2+1)-dimensional multi-component BK system.
基金The project supported by National Natural Science Foundation of China under Grant No. 10071033, the Natural Science Foundation of Jiangsu Province under Grant No. BK2002003, the Project of Technology Innovation Plan for Postgraduate of Jiangsu Province in Year 2006 under Grant No. 72, and the Natural Science Directed Foundation of the Jiangsu Higher Education Institutions under Grant No. 06KJDll0001
文摘Using the direct method for a coupled KdV system, six types of the similarity reductions are obtained. The group explanation of the results is also given. It is pointed out that, in order to find all the results by nonclassical Lie approach, two additional condition equations should be satisfied at the same time together with two original equations.
基金supported by National Natural Science Foundation of China under Grant Nos.10735030 and 90718141Shanghai Leading Academic Discipline Project under Grant No.B412+3 种基金Natural Science Foundations of Zhejiang Province of China under Grant No.Y604056Doctoral Foundation of Ningbo City under Grant No.2005A61030Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0734K.C.Wang Magna Fund in Ningbo University
文摘On bases of the direct method developed by Clarkson and Kruskal [J.Math.Phys.27 (1989) 2201],the(2+1)-dimensional nonisospectral Kadomtsev-Petviashvili (KP) equation has been reduced to three types of (1+1)-dimensional partial differential equations.We focus on solving the third type of reduction and dividing them into threesubcases,from which we obtain rich solutions including some arbitrary functions.
基金Supported by National Natural Science Foundation of China under Grant Nos.10747141 and 10735030Zhejiang Provincial Natural Science Foundations under Grant No.605408+2 种基金Ningbo Natural Science Foundation under Grant Nos.2007A610049 and 2008A610017National Basic Research Program of China (973 Program 2007CB814800)K.C.Wong Magna Fund in Ningbo University
文摘Basing on the direct method developed by Clarkson and Kruskal,the nonisospectral BKP equation can bereduced to three types of(1+1)-dimensional variable coefficients partial differential equations(PDEs).Furthermore,onthe basis of the idea of the symmetry group direct method by Lou et al.,three types of reduction PDEs are all reducedto the related constant coefficients PDEs by some transformations.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10735030,10475055,10675065,and 90503006National Basic Research Program of China (973 Program 2007CB814800)
文摘The perturbed Kaup-Kupershmidt equation is investigated in terms of the approximate symmetry perturbationmethod and the approximate direct method.The similarity reduction solutions of different orders are obtainedfor both methods, series reduction solutions are consequently derived.Higher order similarity reduction equations arelinear variable coefficients ordinary differential equations.By comparison, it is find that the results generated from theapproximate direct method are more general than the results generated from the approximate symmetry perturbationmethod.
基金supported by National Natural Science Foundation of China under Grant No.2006CB921605the Science Research Foundation of Shunde College
文摘We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Oaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.