将直接空气碳捕集(Direct air carbon capture,DAC)与可再生综合能源系统(Integrated energy system,IES)结合,是实现区域碳中和的有效途径。合理的配置方法是系统稳定、灵活、经济与零碳的前提。常规配置方法无法反映DAC吸附、解吸的动...将直接空气碳捕集(Direct air carbon capture,DAC)与可再生综合能源系统(Integrated energy system,IES)结合,是实现区域碳中和的有效途径。合理的配置方法是系统稳定、灵活、经济与零碳的前提。常规配置方法无法反映DAC吸附、解吸的动态CO_(2)传质特性以及能耗特征差异,导致非最优或不可行的配置方案。为此,本文构建了面向配置的DAC模型以反映其动态运行特性,在此基础上以包含投资成本、运维成本、可再生能源削减惩罚以及负碳排环境效益的年总成本为目标函数,建立DAC-IES配置模型,获得各设备的最佳容量与协同运行策略,揭示间歇波动供能背景下DAC的灵活运行机制。案例分析验证了所提出的配置方法的有效性与优越性。结果同时表明,DAC系统灵活运行能够实现与可再生能源更好地协调与更经济地碳捕集。展开更多
为解决常规配置方法无法反映直接空气碳捕集(Direct air carbon capture, DAC)系统CO_(2)吸附-解吸两阶段运行特性差异的问题,构建了可反映吸附-解吸两阶段CO_(2)传质及能耗特征差异的DAC系统模型,进而提出考虑投资成本、可再生能源利...为解决常规配置方法无法反映直接空气碳捕集(Direct air carbon capture, DAC)系统CO_(2)吸附-解吸两阶段运行特性差异的问题,构建了可反映吸附-解吸两阶段CO_(2)传质及能耗特征差异的DAC系统模型,进而提出考虑投资成本、可再生能源利用和碳减排的DAC综合能源系统配置优化方法,获得了各设备的最佳容量及典型场景下DAC系统灵活吸附、解吸和停机的运行策略。案例分析验证了所提方法的有效性与优越性,相比于常规配置方法,本文所提配置方法能够实现区域碳中和目标,并使年总成本降低8.70%。展开更多
[目的]旨在探讨面向碳中和背景下直接空气捕碳(Direct Air Capture,DAC)技术的发展现状、应用案例及其经济性评估,以期为我国实现碳减排目标提供参考。[方法]文章综述了DAC技术的工作原理、类型、运用案例,并分析了其在国内外的发展情...[目的]旨在探讨面向碳中和背景下直接空气捕碳(Direct Air Capture,DAC)技术的发展现状、应用案例及其经济性评估,以期为我国实现碳减排目标提供参考。[方法]文章综述了DAC技术的工作原理、类型、运用案例,并分析了其在国内外的发展情况。通过比较不同研究中的成本数据,评估了DAC技术的经济性,并讨论了当前面临的挑战与可能的解决措施。[结果]研究发现,DAC技术能有效从空气中捕集CO_(2),具有布置灵活、可与可再生能源结合等优点。但其商业化应用仍受到高成本、高能耗和大规模部署的技术挑战的限制。国内外的案例分析揭示DAC技术在实际应用中的效率和成本问题亟待解决,同时也显示了通过技术改进和政策支持可能实现的优化潜力。[结论]尽管存在挑战,DAC技术仍是实现碳中和目标的潜在储备技术,尤其对中国等面临严峻碳减排压力的国家具有重要意义。需要集中研究力量开发更高效、低成本的吸收/吸附剂,改进系统设计,降低能源消耗,并积极探索与可再生能源的结合使用。政府的政策支持和社会的广泛认可也是实现DAC技术商业化的关键因素。通过这些措施可以推动DAC技术的发展和应用,助力实现碳减排和环境保护的双重目标。展开更多
常规的碳捕集与封存技术和碳捕集、利用与封存技术多针对固定源排放CO_(2),直接空气捕集CO_(2)(Direct Air Capture,DAC)技术作为一种新兴的负碳排放技术可对分布源排放的CO_(2)进行捕集,进一步降低全球大气CO_(2)体积分数。介绍了DAC...常规的碳捕集与封存技术和碳捕集、利用与封存技术多针对固定源排放CO_(2),直接空气捕集CO_(2)(Direct Air Capture,DAC)技术作为一种新兴的负碳排放技术可对分布源排放的CO_(2)进行捕集,进一步降低全球大气CO_(2)体积分数。介绍了DAC典型液体吸收工艺、固体吸附工艺的发展过程及相关示范项目建设情况,分析了新兴DAC工艺的技术特点,探讨了现有DAC工艺关键装置方案和未来发展趋势。DAC液体吸收工艺具有吸收剂原料成本较低、选择性较高的特点,可实现大规模连续化捕集,但再生过程中能耗较高。DAC固体吸附工艺具有模块化、投资成本较低的特点,且再生过程能耗相对较低,但需要定期对吸附材料更换和吸附设备维护,适用于较小规模的DAC应用场景。对2种典型DAC工艺吸收/吸附材料进行了概述。DAC电振荡吸附工艺中CO_(2)在固体电极中发生化学反应被捕集,并通过外加电场改变固体电极极性实现CO_(2)脱附,该工艺具有比基于热量或压力的分离过程更高的效率。空气中CO_(2)选择透过DAC分离膜从而实现了高效碳捕集。DAC变湿吸附工艺通过湿度的改变实现CO_(2)的吸脱附,突破了常规变温/变压吸附的高能耗限制等问题。DAC生物吸收工艺通过藻类生物的光合作用将CO_(2)吸收固定。基于双功能催化剂的DAC工艺可以在一个综合过程中实现CO_(2)的捕集与催化,节省了CO_(2)捕集后的运输与存储成本。DAC液体吸收工艺的关键装置为空气接触器、颗粒反应器、煅烧炉和熟化器,其中空气接触器开发的核心在于提高气液接触效率,减少喷淋过程中的水分损失和减轻设备腐蚀,颗粒反应器和熟化器开发的关键在于提高固液两相物料的接触效率以及反应后的固液分离效率。DAC固体吸附工艺由引风模块、吸附/再生模块、供能再生模块和CO_(2)压缩模块组成的模块化装置组成,其中优化吸附模块的核心在于提高气固传质速率、调谐CO_(2)捕集效率、降低压降;并基于不同应用场景工艺需求选择合适的再生系统或利用清洁能源,优化DAC工艺过程和开发高性能的DAC核心装置至关重要。展开更多
碳达峰、碳中和背景下,针对绿色低碳智慧小区微能网优化调度难题,提出一种考虑直接空气碳捕(direct air capture,DAC)与电转气(power to gas,P2G)协同效益的微能网优化调度方法。首先,提出小区空气碳捕应用场景新思路,基于CO_(2)化学吸...碳达峰、碳中和背景下,针对绿色低碳智慧小区微能网优化调度难题,提出一种考虑直接空气碳捕(direct air capture,DAC)与电转气(power to gas,P2G)协同效益的微能网优化调度方法。首先,提出小区空气碳捕应用场景新思路,基于CO_(2)化学吸附原理建立智慧小区DAC碳捕量、碳捕能耗耦合关系的数学模型;进而,在研究P2G-DAC特性的基础上,建立P2G-DAC协同运行模型;然后,在考虑小区微能网系统约束及DAC装置变温吸附循环特性的基础上,以系统综合运行成本最小为目标,构建协同调度模型;最后,利用Yalmip工具箱调用Gurobi求解器对模型进行求解,并基于西南某别墅小区开展仿真验证工作。仿真结果表明,所提智慧小区微能网P2G-DAC协同调度策略能够促使系统综合运行成本下降6.77%、系统碳排量下降75%,在提升微能网运行经济性的同时,能够降低碳排放,产生环境、社会效益。展开更多
文摘将直接空气碳捕集(Direct air carbon capture,DAC)与可再生综合能源系统(Integrated energy system,IES)结合,是实现区域碳中和的有效途径。合理的配置方法是系统稳定、灵活、经济与零碳的前提。常规配置方法无法反映DAC吸附、解吸的动态CO_(2)传质特性以及能耗特征差异,导致非最优或不可行的配置方案。为此,本文构建了面向配置的DAC模型以反映其动态运行特性,在此基础上以包含投资成本、运维成本、可再生能源削减惩罚以及负碳排环境效益的年总成本为目标函数,建立DAC-IES配置模型,获得各设备的最佳容量与协同运行策略,揭示间歇波动供能背景下DAC的灵活运行机制。案例分析验证了所提出的配置方法的有效性与优越性。结果同时表明,DAC系统灵活运行能够实现与可再生能源更好地协调与更经济地碳捕集。
文摘为解决常规配置方法无法反映直接空气碳捕集(Direct air carbon capture, DAC)系统CO_(2)吸附-解吸两阶段运行特性差异的问题,构建了可反映吸附-解吸两阶段CO_(2)传质及能耗特征差异的DAC系统模型,进而提出考虑投资成本、可再生能源利用和碳减排的DAC综合能源系统配置优化方法,获得了各设备的最佳容量及典型场景下DAC系统灵活吸附、解吸和停机的运行策略。案例分析验证了所提方法的有效性与优越性,相比于常规配置方法,本文所提配置方法能够实现区域碳中和目标,并使年总成本降低8.70%。
文摘[目的]旨在探讨面向碳中和背景下直接空气捕碳(Direct Air Capture,DAC)技术的发展现状、应用案例及其经济性评估,以期为我国实现碳减排目标提供参考。[方法]文章综述了DAC技术的工作原理、类型、运用案例,并分析了其在国内外的发展情况。通过比较不同研究中的成本数据,评估了DAC技术的经济性,并讨论了当前面临的挑战与可能的解决措施。[结果]研究发现,DAC技术能有效从空气中捕集CO_(2),具有布置灵活、可与可再生能源结合等优点。但其商业化应用仍受到高成本、高能耗和大规模部署的技术挑战的限制。国内外的案例分析揭示DAC技术在实际应用中的效率和成本问题亟待解决,同时也显示了通过技术改进和政策支持可能实现的优化潜力。[结论]尽管存在挑战,DAC技术仍是实现碳中和目标的潜在储备技术,尤其对中国等面临严峻碳减排压力的国家具有重要意义。需要集中研究力量开发更高效、低成本的吸收/吸附剂,改进系统设计,降低能源消耗,并积极探索与可再生能源的结合使用。政府的政策支持和社会的广泛认可也是实现DAC技术商业化的关键因素。通过这些措施可以推动DAC技术的发展和应用,助力实现碳减排和环境保护的双重目标。
文摘常规的碳捕集与封存技术和碳捕集、利用与封存技术多针对固定源排放CO_(2),直接空气捕集CO_(2)(Direct Air Capture,DAC)技术作为一种新兴的负碳排放技术可对分布源排放的CO_(2)进行捕集,进一步降低全球大气CO_(2)体积分数。介绍了DAC典型液体吸收工艺、固体吸附工艺的发展过程及相关示范项目建设情况,分析了新兴DAC工艺的技术特点,探讨了现有DAC工艺关键装置方案和未来发展趋势。DAC液体吸收工艺具有吸收剂原料成本较低、选择性较高的特点,可实现大规模连续化捕集,但再生过程中能耗较高。DAC固体吸附工艺具有模块化、投资成本较低的特点,且再生过程能耗相对较低,但需要定期对吸附材料更换和吸附设备维护,适用于较小规模的DAC应用场景。对2种典型DAC工艺吸收/吸附材料进行了概述。DAC电振荡吸附工艺中CO_(2)在固体电极中发生化学反应被捕集,并通过外加电场改变固体电极极性实现CO_(2)脱附,该工艺具有比基于热量或压力的分离过程更高的效率。空气中CO_(2)选择透过DAC分离膜从而实现了高效碳捕集。DAC变湿吸附工艺通过湿度的改变实现CO_(2)的吸脱附,突破了常规变温/变压吸附的高能耗限制等问题。DAC生物吸收工艺通过藻类生物的光合作用将CO_(2)吸收固定。基于双功能催化剂的DAC工艺可以在一个综合过程中实现CO_(2)的捕集与催化,节省了CO_(2)捕集后的运输与存储成本。DAC液体吸收工艺的关键装置为空气接触器、颗粒反应器、煅烧炉和熟化器,其中空气接触器开发的核心在于提高气液接触效率,减少喷淋过程中的水分损失和减轻设备腐蚀,颗粒反应器和熟化器开发的关键在于提高固液两相物料的接触效率以及反应后的固液分离效率。DAC固体吸附工艺由引风模块、吸附/再生模块、供能再生模块和CO_(2)压缩模块组成的模块化装置组成,其中优化吸附模块的核心在于提高气固传质速率、调谐CO_(2)捕集效率、降低压降;并基于不同应用场景工艺需求选择合适的再生系统或利用清洁能源,优化DAC工艺过程和开发高性能的DAC核心装置至关重要。
文摘碳达峰、碳中和背景下,针对绿色低碳智慧小区微能网优化调度难题,提出一种考虑直接空气碳捕(direct air capture,DAC)与电转气(power to gas,P2G)协同效益的微能网优化调度方法。首先,提出小区空气碳捕应用场景新思路,基于CO_(2)化学吸附原理建立智慧小区DAC碳捕量、碳捕能耗耦合关系的数学模型;进而,在研究P2G-DAC特性的基础上,建立P2G-DAC协同运行模型;然后,在考虑小区微能网系统约束及DAC装置变温吸附循环特性的基础上,以系统综合运行成本最小为目标,构建协同调度模型;最后,利用Yalmip工具箱调用Gurobi求解器对模型进行求解,并基于西南某别墅小区开展仿真验证工作。仿真结果表明,所提智慧小区微能网P2G-DAC协同调度策略能够促使系统综合运行成本下降6.77%、系统碳排量下降75%,在提升微能网运行经济性的同时,能够降低碳排放,产生环境、社会效益。