The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve ob...The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve obviously except pyrite. Based on the relationship between elemental sulfur and the residual sulphides in the leaching residue, the dissolution of sphalerite, chalcopyrite, covellite and galena is assumed to follow the indirect oxidation reactions, where the acidic dissolution takes place firstly and then the released H2S transfers from the mineral surface into bulk solution and is further oxidized into elemental sulfur. The interface chemical reaction is further supposed as the controlling step in the leaching of these sulphides. The direct electrochemical oxidation reactions are assumed to contribute to the dissolution of pyrrhotite, which is controlled by the diffusion through elemental sulfur layer.展开更多
A direct contact membrane distillation(DCMD)process was applied to prepare high concentration polyaluminum chloride(PACl)with high Alc content.The changes in total Al concentration(AlT)and Al species distributio...A direct contact membrane distillation(DCMD)process was applied to prepare high concentration polyaluminum chloride(PACl)with high Alc content.The changes in total Al concentration(AlT)and Al species distribution were investigated.The results showed that AlT increased but the flux decreased with operating time during the DCMD process.The Alc content increased from 65%to 81%while the Alb content decreased from 34% to 18%,and the Ala content was almost 1%in the process.2.1 mol·L 1PACl with 81%Alc was successfully prepared by DCMD method.Thus the DCMD is an effective method for preparing high concentration PACl with high Alc content.展开更多
In this paper an efficient computational method based on extending the sensitivity approach(SA) is proposed to find an analytic exact solution of nonlinear differential difference equations.In this manner we avoid sol...In this paper an efficient computational method based on extending the sensitivity approach(SA) is proposed to find an analytic exact solution of nonlinear differential difference equations.In this manner we avoid solving the nonlinear problem directly.By extension of sensitivity approach for differential difference equations(DDEs),the nonlinear original problem is transformed into infinite linear differential difference equations,which should be solved in a recursive manner.Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained.Numerical examples are employed to show the effectiveness of the proposed approach.展开更多
It is always a bottleneck to design an effective algorithm for linear time-varying systems in engineering applications.For a class of systems,whose coefficients matrix is based on time-varying polynomial,a modified hi...It is always a bottleneck to design an effective algorithm for linear time-varying systems in engineering applications.For a class of systems,whose coefficients matrix is based on time-varying polynomial,a modified highly precise direct integration(VHPD-T method)was presented.Through introducing new variables and expanding dimensions,the system can be transformed into a timeinvariant system,in which the transfer matrix can be computed for once and used forever with a highly precise direct integration method.The method attains higher precision than the common methods(e.g.RK4 and power series)and high efficiency in computation.Some numerical examples demonstrate the validity and efficiency of the method proposed.展开更多
基金Project (50964004) supported by the National Natural Science Foundation of China
文摘The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve obviously except pyrite. Based on the relationship between elemental sulfur and the residual sulphides in the leaching residue, the dissolution of sphalerite, chalcopyrite, covellite and galena is assumed to follow the indirect oxidation reactions, where the acidic dissolution takes place firstly and then the released H2S transfers from the mineral surface into bulk solution and is further oxidized into elemental sulfur. The interface chemical reaction is further supposed as the controlling step in the leaching of these sulphides. The direct electrochemical oxidation reactions are assumed to contribute to the dissolution of pyrrhotite, which is controlled by the diffusion through elemental sulfur layer.
基金Supported by National Natural Science Foundation of China(50708109 21076219) the National High Technology Research and Development Key Program of China(2007AA06Z339 2009AA062901)
文摘A direct contact membrane distillation(DCMD)process was applied to prepare high concentration polyaluminum chloride(PACl)with high Alc content.The changes in total Al concentration(AlT)and Al species distribution were investigated.The results showed that AlT increased but the flux decreased with operating time during the DCMD process.The Alc content increased from 65%to 81%while the Alb content decreased from 34% to 18%,and the Ala content was almost 1%in the process.2.1 mol·L 1PACl with 81%Alc was successfully prepared by DCMD method.Thus the DCMD is an effective method for preparing high concentration PACl with high Alc content.
文摘In this paper an efficient computational method based on extending the sensitivity approach(SA) is proposed to find an analytic exact solution of nonlinear differential difference equations.In this manner we avoid solving the nonlinear problem directly.By extension of sensitivity approach for differential difference equations(DDEs),the nonlinear original problem is transformed into infinite linear differential difference equations,which should be solved in a recursive manner.Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained.Numerical examples are employed to show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(Grant No.50876066)
文摘It is always a bottleneck to design an effective algorithm for linear time-varying systems in engineering applications.For a class of systems,whose coefficients matrix is based on time-varying polynomial,a modified highly precise direct integration(VHPD-T method)was presented.Through introducing new variables and expanding dimensions,the system can be transformed into a timeinvariant system,in which the transfer matrix can be computed for once and used forever with a highly precise direct integration method.The method attains higher precision than the common methods(e.g.RK4 and power series)and high efficiency in computation.Some numerical examples demonstrate the validity and efficiency of the method proposed.