Eigenstructure-based coherence attributes are efficient and mature techniques for large-scale fracture detection. However, in horizontally bedded and continuous strata, buried fractures in high grayscale value zones a...Eigenstructure-based coherence attributes are efficient and mature techniques for large-scale fracture detection. However, in horizontally bedded and continuous strata, buried fractures in high grayscale value zones are difficult to detect. Furthermore, middleand small-scale fractures in fractured zones where migration image energies are usually not concentrated perfectly are also hard to detect because of the fuzzy, clouded shadows owing to low grayscale values. A new fracture enhancement method combined with histogram equalization is proposed to solve these problems. With this method, the contrast between discontinuities and background in coherence images is increased, linear structures are highlighted by stepwise adjustment of the threshold of the coherence image, and fractures are detected at different scales. Application of the method shows that it can also improve fracture cognition and accuracy.展开更多
Since image real-time processing requires vast amount of computation and high-speed hardware,it is difficult to be implemented with general microcomputer system. In order to solve the problem,a powerful digital signal...Since image real-time processing requires vast amount of computation and high-speed hardware,it is difficult to be implemented with general microcomputer system. In order to solve the problem,a powerful digital signal processing (DSP) hardware system is proposed,which is able to meet needs of image real-time processing.There are many approaches to enhance infrared image.But only histogram equalization is discussed because it is the most common and effective way.On the basis of histogram equalization principle,the specific procedures implemented in DSP are shown.At last the experimental results are given.展开更多
基金sponsored by the National Science&Technology Major Special Project(Grant No.2011ZX05025-001-04)
文摘Eigenstructure-based coherence attributes are efficient and mature techniques for large-scale fracture detection. However, in horizontally bedded and continuous strata, buried fractures in high grayscale value zones are difficult to detect. Furthermore, middleand small-scale fractures in fractured zones where migration image energies are usually not concentrated perfectly are also hard to detect because of the fuzzy, clouded shadows owing to low grayscale values. A new fracture enhancement method combined with histogram equalization is proposed to solve these problems. With this method, the contrast between discontinuities and background in coherence images is increased, linear structures are highlighted by stepwise adjustment of the threshold of the coherence image, and fractures are detected at different scales. Application of the method shows that it can also improve fracture cognition and accuracy.
文摘Since image real-time processing requires vast amount of computation and high-speed hardware,it is difficult to be implemented with general microcomputer system. In order to solve the problem,a powerful digital signal processing (DSP) hardware system is proposed,which is able to meet needs of image real-time processing.There are many approaches to enhance infrared image.But only histogram equalization is discussed because it is the most common and effective way.On the basis of histogram equalization principle,the specific procedures implemented in DSP are shown.At last the experimental results are given.