基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研...基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研究.从标准PHD滤波出发,更为合理地推导出PHD-TBD算法的粒子权重更新计算表达式,实现对目标数的准确估计;同时利用贝叶斯滤波理论,推导出基于量测的新生粒子概率密度采样函数,完成对目标的快速发现.仿真实验表明,与现有的PHD-TBD相比,改进算法能够适应目标扩散情况,准确估计目标数目,并实现对目标的快速发现和位置准确估计.展开更多
基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前...基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前跟踪的实际,合理地推导出CPHD-TBD算法的粒子权重更新表达式;分析了CPHD滤波目标势分布的物理意义,实现了目标势分布更新计算在检测前跟踪的应用.将CPHD滤波和TBD进行有效结合,提出了基于势概率假设密度滤波的检测前跟踪算法,并给出其详细实现步骤.仿真实验证明提出的CPHD-TBD算法与现有概率假设密度检测前跟踪(PHD-TBD)算法相比,能更详细地传递目标分布信息,从本质上改变了PHD-TBD对目标数估计的方式,能更准确稳定估计目标数,实现了对目标的发现和状态准确估计,性能明显更优.展开更多
同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术使移动机器人在缺乏先验环境信息的条件下,能够在估计自身位姿的同时构建环境地图。然而,在海洋、矿洞等复杂环境中,移动机器人容易受到随机突变噪声的干扰,进而导致SLA...同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术使移动机器人在缺乏先验环境信息的条件下,能够在估计自身位姿的同时构建环境地图。然而,在海洋、矿洞等复杂环境中,移动机器人容易受到随机突变噪声的干扰,进而导致SLAM性能下降。现有的概率假设密度(Probability Hypothesis Density,PHD)SLAM算法未考虑随机突变噪声,受到干扰时在线自适应调整能力较弱。为解决移动机器人因随机突变噪声导致状态估计和建图精度降低的问题,本文结合强跟踪滤波器(Strong Tracking Filter,STF)与PHD滤波器,提出了一种基于强跟踪的自适应PHD-SLAM滤波算法(Strong Tracking Probability Hypothesis Density Simultaneous Localization and Mapping,STPHD-SLAM)。该算法以PHD-SLAM为框架,针对过程噪声协方差和量测噪声协方差随机突变问题,本文通过在特征预测协方差中引入STF中的渐消因子,实现了对特征预测的自适应修正和卡尔曼增益的动态调整,从而增强了算法的自适应能力。其中渐消因子根据量测新息递归更新,确保噪声突变时每个时刻的量测新息保持正交,从而充分利用量测信息,准确并且快速地跟踪突变噪声。针对渐消因子激增导致的滤波器发散问题,本文对渐消因子进行边界约束,提高算法的鲁棒性。仿真结果表明,在量测噪声协方差和过程噪声协方差随机突变的情况下,所提算法相较于PHD-SLAM 1.0和PHD-SLAM 2.0的定位和建图精度都得到了提高,同时保证了计算效率。展开更多
文摘基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研究.从标准PHD滤波出发,更为合理地推导出PHD-TBD算法的粒子权重更新计算表达式,实现对目标数的准确估计;同时利用贝叶斯滤波理论,推导出基于量测的新生粒子概率密度采样函数,完成对目标的快速发现.仿真实验表明,与现有的PHD-TBD相比,改进算法能够适应目标扩散情况,准确估计目标数目,并实现对目标的快速发现和位置准确估计.
文摘基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前跟踪的实际,合理地推导出CPHD-TBD算法的粒子权重更新表达式;分析了CPHD滤波目标势分布的物理意义,实现了目标势分布更新计算在检测前跟踪的应用.将CPHD滤波和TBD进行有效结合,提出了基于势概率假设密度滤波的检测前跟踪算法,并给出其详细实现步骤.仿真实验证明提出的CPHD-TBD算法与现有概率假设密度检测前跟踪(PHD-TBD)算法相比,能更详细地传递目标分布信息,从本质上改变了PHD-TBD对目标数估计的方式,能更准确稳定估计目标数,实现了对目标的发现和状态准确估计,性能明显更优.
文摘同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术使移动机器人在缺乏先验环境信息的条件下,能够在估计自身位姿的同时构建环境地图。然而,在海洋、矿洞等复杂环境中,移动机器人容易受到随机突变噪声的干扰,进而导致SLAM性能下降。现有的概率假设密度(Probability Hypothesis Density,PHD)SLAM算法未考虑随机突变噪声,受到干扰时在线自适应调整能力较弱。为解决移动机器人因随机突变噪声导致状态估计和建图精度降低的问题,本文结合强跟踪滤波器(Strong Tracking Filter,STF)与PHD滤波器,提出了一种基于强跟踪的自适应PHD-SLAM滤波算法(Strong Tracking Probability Hypothesis Density Simultaneous Localization and Mapping,STPHD-SLAM)。该算法以PHD-SLAM为框架,针对过程噪声协方差和量测噪声协方差随机突变问题,本文通过在特征预测协方差中引入STF中的渐消因子,实现了对特征预测的自适应修正和卡尔曼增益的动态调整,从而增强了算法的自适应能力。其中渐消因子根据量测新息递归更新,确保噪声突变时每个时刻的量测新息保持正交,从而充分利用量测信息,准确并且快速地跟踪突变噪声。针对渐消因子激增导致的滤波器发散问题,本文对渐消因子进行边界约束,提高算法的鲁棒性。仿真结果表明,在量测噪声协方差和过程噪声协方差随机突变的情况下,所提算法相较于PHD-SLAM 1.0和PHD-SLAM 2.0的定位和建图精度都得到了提高,同时保证了计算效率。