A CMOS charge-pump circuit with adjustable current is presented.A bandgap voltage reference,a low drop-out regulator,and a capacitive DC-DC voltage-booster are used to generate supply voltage for the current reference...A CMOS charge-pump circuit with adjustable current is presented.A bandgap voltage reference,a low drop-out regulator,and a capacitive DC-DC voltage-booster are used to generate supply voltage for the current reference.This generated voltage is insensitive to the changes of external power supply voltage and temperature,while the current reference itself is insensitive to temperature.The circuit is designed in 0.18μm 1.8V standard digital CMOS process.The simulated results show that the performance of the circuit is satisfied.展开更多
The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from volta...The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from voltage to frequency,the A/D conversion of ring-ADC achieves good linearity and precise calibration against process variations compared with the delay-line ADC. A differential pulse counting discriminator also helps decrease the power consumption of the ring-ADC. It is fabricated with a Chartered 0.35μm CMOS process, and the measurement results of the integral and differential nonlinearity performance are 0.92LSB and 1.2LSB respectively. The maximum gain error measured in ten sample chips is ± 3.85%. With sampling rate of 500kHz and when the voltage regulator module (VRM) works in steady state, the ring-ADC's average power consumption is 2.56mW. The ring-ADC is verified to meet the requirements for digital VRM controller application.展开更多
For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor ...For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency.展开更多
With the use of this novel average model for Single Stage Flyback PFC+Flyback DC/DC converter, voltage control mode, peak current control mode and average current control mode can be simulated easily by changing the m...With the use of this novel average model for Single Stage Flyback PFC+Flyback DC/DC converter, voltage control mode, peak current control mode and average current control mode can be simulated easily by changing the model's parameters. It can be used to do various analysis not only for small signal and static behavior but also for large signal and dynamic behavior of the converter. By using this average model the simulation speed can be improved by 2 orders of magnitude above that obtained by using the conventional switched model. It can be applied to optimize the trade\|off between high power factor, voltage stress, current stress and good output performance while designing this kind of single stage PFC converter. A 60W single stage power factor corrector was built to verify the proposed model. The modeling principle can be applied to other Single Stage PFC topologies.展开更多
This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield...This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.展开更多
This paper presents an electric drive system whose motor is connected to a battery by means of a buck DC/DC converter. This motor is further connected to an ultracapacitor by means of a boost DC/DC converter. First, o...This paper presents an electric drive system whose motor is connected to a battery by means of a buck DC/DC converter. This motor is further connected to an ultracapacitor by means of a boost DC/DC converter. First, operation and break processes are studied when the converters are switched off as well as when they are switched on in current limitation mode. Then, a comparative analysis of the results in the two operation modes is done.展开更多
For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electr...For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electric field distortion, trend to trigger surface discharge of barriers. This paper studied the influence of surface charge on flashover voltage of oil-impregnated pressboard under AC-DC combined electric field. The study finds that the flashover voltage of oil-pressboard interface under negative polarity DC superimposed AC electric field is higher than that.of positive DC superimposed AC voltage to form composite electric field. It was found that homopolar surface charge has been accumulated on the interface of oil-pressboard with positive or negative DC voltage through measuring surface potential by the electrostatic capacitive probe. The surface charge produced electric field in the opposite direction, which weakening the synthetic electric field strength. What's more, under the same conditions, the negative surface charge density oil-pressboard is much larger than the positive.展开更多
This paper discusses the characteristics of DC transmission common system ground electrode type and shared ground electrode, established the mathematical model of two circuit DC systems share ground electrode, analyze...This paper discusses the characteristics of DC transmission common system ground electrode type and shared ground electrode, established the mathematical model of two circuit DC systems share ground electrode, analyze effects of the shared loop ground DC transmission system electrode on the operation of HVDC system size under different operation modes, and compare with the independent ground electrode, ground electrode impact on environment under different operation mode, and the paper finally puts forward some solving measures for the influence of the shared ground electrode on the environment and public ground electrode effects on DC system operation problems.展开更多
This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxi...This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxide semiconductor field-effect transistors) as fast-electronic switches with a relatively low ON-state voltage drop) for HSVs. An AC-DC converter, when seen as an AC-DC rectifier, can be used in many fields, e.g., for multi-functional AC-DC/DC-AC convener generator^starter and conventional DC-AC convener motors and AC-DC converter generators or generator sets, welding machines, etc. The paper also describes a novel AC-DC convener, with reverse-conducting transistors and without the use of optoelectronic separation (which does not require a separate power supply), which may be easily realized in IC (integrated-circuit) technology. Computer simulation allows for waveform evaluation for timing analysis of all components of the AC-DC-converter's physical model, both during normal operation as well as in some states of emergency. The paper also presents the results of bench experimental studies where the MOSFETs were used as fast-electronic switches with a relatively low ON-state voltage drop. For experimental studies, a novel AC-DC converter has been put together on the Mitsubishi FM600TU-3A module. The AC-DC converter with reverse-conducting transistors in a double-way connection has a lot of advantages compared to the conventional AC-DC convener acting as a diode rectifier, such as higher energy efficiency and greater reliability resulting from the lower temperature of electronic switches.展开更多
文摘A CMOS charge-pump circuit with adjustable current is presented.A bandgap voltage reference,a low drop-out regulator,and a capacitive DC-DC voltage-booster are used to generate supply voltage for the current reference.This generated voltage is insensitive to the changes of external power supply voltage and temperature,while the current reference itself is insensitive to temperature.The circuit is designed in 0.18μm 1.8V standard digital CMOS process.The simulated results show that the performance of the circuit is satisfied.
文摘The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from voltage to frequency,the A/D conversion of ring-ADC achieves good linearity and precise calibration against process variations compared with the delay-line ADC. A differential pulse counting discriminator also helps decrease the power consumption of the ring-ADC. It is fabricated with a Chartered 0.35μm CMOS process, and the measurement results of the integral and differential nonlinearity performance are 0.92LSB and 1.2LSB respectively. The maximum gain error measured in ten sample chips is ± 3.85%. With sampling rate of 500kHz and when the voltage regulator module (VRM) works in steady state, the ring-ADC's average power consumption is 2.56mW. The ring-ADC is verified to meet the requirements for digital VRM controller application.
文摘For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency.
文摘With the use of this novel average model for Single Stage Flyback PFC+Flyback DC/DC converter, voltage control mode, peak current control mode and average current control mode can be simulated easily by changing the model's parameters. It can be used to do various analysis not only for small signal and static behavior but also for large signal and dynamic behavior of the converter. By using this average model the simulation speed can be improved by 2 orders of magnitude above that obtained by using the conventional switched model. It can be applied to optimize the trade\|off between high power factor, voltage stress, current stress and good output performance while designing this kind of single stage PFC converter. A 60W single stage power factor corrector was built to verify the proposed model. The modeling principle can be applied to other Single Stage PFC topologies.
文摘This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.
文摘This paper presents an electric drive system whose motor is connected to a battery by means of a buck DC/DC converter. This motor is further connected to an ultracapacitor by means of a boost DC/DC converter. First, operation and break processes are studied when the converters are switched off as well as when they are switched on in current limitation mode. Then, a comparative analysis of the results in the two operation modes is done.
文摘For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electric field distortion, trend to trigger surface discharge of barriers. This paper studied the influence of surface charge on flashover voltage of oil-impregnated pressboard under AC-DC combined electric field. The study finds that the flashover voltage of oil-pressboard interface under negative polarity DC superimposed AC electric field is higher than that.of positive DC superimposed AC voltage to form composite electric field. It was found that homopolar surface charge has been accumulated on the interface of oil-pressboard with positive or negative DC voltage through measuring surface potential by the electrostatic capacitive probe. The surface charge produced electric field in the opposite direction, which weakening the synthetic electric field strength. What's more, under the same conditions, the negative surface charge density oil-pressboard is much larger than the positive.
文摘This paper discusses the characteristics of DC transmission common system ground electrode type and shared ground electrode, established the mathematical model of two circuit DC systems share ground electrode, analyze effects of the shared loop ground DC transmission system electrode on the operation of HVDC system size under different operation modes, and compare with the independent ground electrode, ground electrode impact on environment under different operation mode, and the paper finally puts forward some solving measures for the influence of the shared ground electrode on the environment and public ground electrode effects on DC system operation problems.
文摘This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxide semiconductor field-effect transistors) as fast-electronic switches with a relatively low ON-state voltage drop) for HSVs. An AC-DC converter, when seen as an AC-DC rectifier, can be used in many fields, e.g., for multi-functional AC-DC/DC-AC convener generator^starter and conventional DC-AC convener motors and AC-DC converter generators or generator sets, welding machines, etc. The paper also describes a novel AC-DC convener, with reverse-conducting transistors and without the use of optoelectronic separation (which does not require a separate power supply), which may be easily realized in IC (integrated-circuit) technology. Computer simulation allows for waveform evaluation for timing analysis of all components of the AC-DC-converter's physical model, both during normal operation as well as in some states of emergency. The paper also presents the results of bench experimental studies where the MOSFETs were used as fast-electronic switches with a relatively low ON-state voltage drop. For experimental studies, a novel AC-DC converter has been put together on the Mitsubishi FM600TU-3A module. The AC-DC converter with reverse-conducting transistors in a double-way connection has a lot of advantages compared to the conventional AC-DC convener acting as a diode rectifier, such as higher energy efficiency and greater reliability resulting from the lower temperature of electronic switches.