直流电压控制是多端柔性直流输电(voltage sourced converter based multi-terminal high voltage direct current transmission,VSC-MTDC)系统稳定运行的重要因素之一。下垂控制策略无需通讯、可靠性较高,但存在直流电压质量较差、功...直流电压控制是多端柔性直流输电(voltage sourced converter based multi-terminal high voltage direct current transmission,VSC-MTDC)系统稳定运行的重要因素之一。下垂控制策略无需通讯、可靠性较高,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。首先,研究MTDC系统中下垂控制参数对直流电压与电流(功率)的影响机理。接着,分析应用于MTDC系统的下垂控制策略的约束条件,研究满足MTDC系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。在此基础上,提出一种改进的自适应下垂控制策略,通过引入功率影响因子实现下垂系数的闭环控制,优化不同工况下的系统运行特性。该控制策略能够减小MTDC系统的直流电压偏差,简化控制器参数设计,同时不依赖于上层控制系统与换流站之间的高速通讯,有利于提高系统可靠性和稳定性。算例分析和仿真结果验证了所提出方法的正确性和有效性。展开更多
文摘直流电压控制是多端柔性直流输电(voltage sourced converter based multi-terminal high voltage direct current transmission,VSC-MTDC)系统稳定运行的重要因素之一。下垂控制策略无需通讯、可靠性较高,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。首先,研究MTDC系统中下垂控制参数对直流电压与电流(功率)的影响机理。接着,分析应用于MTDC系统的下垂控制策略的约束条件,研究满足MTDC系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。在此基础上,提出一种改进的自适应下垂控制策略,通过引入功率影响因子实现下垂系数的闭环控制,优化不同工况下的系统运行特性。该控制策略能够减小MTDC系统的直流电压偏差,简化控制器参数设计,同时不依赖于上层控制系统与换流站之间的高速通讯,有利于提高系统可靠性和稳定性。算例分析和仿真结果验证了所提出方法的正确性和有效性。