The first completely localized DC back-to-back project for asynchronous interconnection between Northwest and Central China plays an important role in realizing national power grid interconnection, spurring indigenous...The first completely localized DC back-to-back project for asynchronous interconnection between Northwest and Central China plays an important role in realizing national power grid interconnection, spurring indigenous manufacturing industries and promoting DC transmission equipment. Insisting on the principle of autonomous innovation, this project was based on domestic forces in every aspect, from engineering organization, system design, equipment completion, engineering design, equipment manufacturing and procurement to construction and debugging. By passing through strict quality control, intermediate supervision and acceptance test and assessment, the project has been proved up to world advanced level.展开更多
This paper focuses on the implementation of a three-phase four-wire current-controlled Voltage Source Inverter (CC-VSI) as both power quality improvement and Photovoltaic (PV) energy extraction. For power quality ...This paper focuses on the implementation of a three-phase four-wire current-controlled Voltage Source Inverter (CC-VSI) as both power quality improvement and Photovoltaic (PV) energy extraction. For power quality improvement, the CC-VSI works as a grid current-controller shunt active power filter. Then, the PV array supported by the Hill- Climbing maximum power point tracking (MPPT) controller is coupled to the DC bus of the CC-VSI. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to the PV maximum power. From computer simulation results, the CC-VSI is able to compensate for the harmonic and reactive power as well as to extract the PV maximum power.展开更多
This paper proposes the control of a grid side converter under unbalance voltage conditions for wind turbine system. The control technique is designed to operate under unbalance voltage by independent control between ...This paper proposes the control of a grid side converter under unbalance voltage conditions for wind turbine system. The control technique is designed to operate under unbalance voltage by independent control between positive and negative components. The converter will regulate the DC link voltage at the specific value (650 V). To verify an operation of the proposed control, the simulation is conducted by MATLAB/SIMULINK program. The experiments are conducted on a 5 kW system composed of wind turbine simulator, machine side converter and the propose grid side converter for operation under unbalance voltage. By comparing the simulation experimentation results, it can be shown that the proposed control can be continuously operating through an extremely sag voltage without damage. Moreover the proposed control can deliver power to the grid and regulate DC link voltage under unbalance voltage.展开更多
To analyze the influence of _+400 kV Q^nghai-Tibet HVDC transmission system on transmission- line protections in Qjnghai AG power system, a closed-loop simulation system was constructed by combing HyperSim system wit...To analyze the influence of _+400 kV Q^nghai-Tibet HVDC transmission system on transmission- line protections in Qjnghai AG power system, a closed-loop simulation system was constructed by combing HyperSim system with HVDG control protection devices. Various faults on double-circuit 750 kV and multi- circuit 330 kV AC transmission lines in Qjnghai power system were simulated. The impedance characteristics and harmonic components at Qjnghai side of Qjng-Tibet DG transmission line were analyzed. The harmonic proportion in voltages and currents were studied for faults that took place at different locations near the DG system. The inflence of Qing-Tibet DG system on the directional components of protections, differential protections and distance protections of AC transmission lines was discussed and drew the conclusions that the DC sytem had little influence on differential protections, while had great inflence on directional components and distance protection. The conclusions can provide reference for studying the interaction between AC and DG systems.展开更多
文摘The first completely localized DC back-to-back project for asynchronous interconnection between Northwest and Central China plays an important role in realizing national power grid interconnection, spurring indigenous manufacturing industries and promoting DC transmission equipment. Insisting on the principle of autonomous innovation, this project was based on domestic forces in every aspect, from engineering organization, system design, equipment completion, engineering design, equipment manufacturing and procurement to construction and debugging. By passing through strict quality control, intermediate supervision and acceptance test and assessment, the project has been proved up to world advanced level.
文摘This paper focuses on the implementation of a three-phase four-wire current-controlled Voltage Source Inverter (CC-VSI) as both power quality improvement and Photovoltaic (PV) energy extraction. For power quality improvement, the CC-VSI works as a grid current-controller shunt active power filter. Then, the PV array supported by the Hill- Climbing maximum power point tracking (MPPT) controller is coupled to the DC bus of the CC-VSI. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to the PV maximum power. From computer simulation results, the CC-VSI is able to compensate for the harmonic and reactive power as well as to extract the PV maximum power.
文摘This paper proposes the control of a grid side converter under unbalance voltage conditions for wind turbine system. The control technique is designed to operate under unbalance voltage by independent control between positive and negative components. The converter will regulate the DC link voltage at the specific value (650 V). To verify an operation of the proposed control, the simulation is conducted by MATLAB/SIMULINK program. The experiments are conducted on a 5 kW system composed of wind turbine simulator, machine side converter and the propose grid side converter for operation under unbalance voltage. By comparing the simulation experimentation results, it can be shown that the proposed control can be continuously operating through an extremely sag voltage without damage. Moreover the proposed control can deliver power to the grid and regulate DC link voltage under unbalance voltage.
文摘To analyze the influence of _+400 kV Q^nghai-Tibet HVDC transmission system on transmission- line protections in Qjnghai AG power system, a closed-loop simulation system was constructed by combing HyperSim system with HVDG control protection devices. Various faults on double-circuit 750 kV and multi- circuit 330 kV AC transmission lines in Qjnghai power system were simulated. The impedance characteristics and harmonic components at Qjnghai side of Qjng-Tibet DG transmission line were analyzed. The harmonic proportion in voltages and currents were studied for faults that took place at different locations near the DG system. The inflence of Qing-Tibet DG system on the directional components of protections, differential protections and distance protections of AC transmission lines was discussed and drew the conclusions that the DC sytem had little influence on differential protections, while had great inflence on directional components and distance protection. The conclusions can provide reference for studying the interaction between AC and DG systems.