A method for computing DC steady-state solutions in complex frequency-domain is put forward. It starts with complex frequency-domain transmission line equations, obtains the complex expressions of voltage and current ...A method for computing DC steady-state solutions in complex frequency-domain is put forward. It starts with complex frequency-domain transmission line equations, obtains the complex expressions of voltage and current at zero initial states, and find the DC steady-state solutions of voltage and current by using the fina value theorem of Laplace transform thory. The solutions are discussed with special internal resistances of DC voltage source and loads. A case study demonstrated that the proposed method is applicable to acquiring the DC steady-state voltage waveform and current waveform without first obtaining the analytic solutions.展开更多
The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the...The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the high-power shipping during the design stage, the steady-state analysis is as important as the dynamic analysis generally. A mathematical model of the brushless DC propulsion motor is established according to the state-space method for the dynamic and steady-state performance analysis. The state-space mathematical model is a set of linear differential equations, so the steady-state currents of the armature windings can be gained directly by the symmetrical boundary conditions and the eigenvalues of the system matrix. The steady-state simulation results are compared with the dynamic ones to validate the correctness of this eigenvector method.展开更多
文摘A method for computing DC steady-state solutions in complex frequency-domain is put forward. It starts with complex frequency-domain transmission line equations, obtains the complex expressions of voltage and current at zero initial states, and find the DC steady-state solutions of voltage and current by using the fina value theorem of Laplace transform thory. The solutions are discussed with special internal resistances of DC voltage source and loads. A case study demonstrated that the proposed method is applicable to acquiring the DC steady-state voltage waveform and current waveform without first obtaining the analytic solutions.
文摘The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the high-power shipping during the design stage, the steady-state analysis is as important as the dynamic analysis generally. A mathematical model of the brushless DC propulsion motor is established according to the state-space method for the dynamic and steady-state performance analysis. The state-space mathematical model is a set of linear differential equations, so the steady-state currents of the armature windings can be gained directly by the symmetrical boundary conditions and the eigenvalues of the system matrix. The steady-state simulation results are compared with the dynamic ones to validate the correctness of this eigenvector method.