无变压器型光伏逆变系统中的漏电流高于300 m A时规定必须在0.3 s内从电网中切除。为解决系统中脉动共模电压引起的漏电流问题,提出新型七开关逆变拓扑(H7),该拓扑在直流输入端引入两个高频开关管,续流阶段确保直交两侧完全解耦,维持共...无变压器型光伏逆变系统中的漏电流高于300 m A时规定必须在0.3 s内从电网中切除。为解决系统中脉动共模电压引起的漏电流问题,提出新型七开关逆变拓扑(H7),该拓扑在直流输入端引入两个高频开关管,续流阶段确保直交两侧完全解耦,维持共模电压的恒定。在调制方法上,还可以实现倍频SPWM策略,降低电流纹波。在任意模态中开关管始终交错工作,有助于热应力均衡。最后,通过2 k W的样机平台验证了抑制后漏电流峰值仅为60 m A,相对于传统拓扑性能更优越,提高了系统的安全裕度。展开更多
Full-Bridge Modular Multilevel Converter(FBMMC) has strong ability to ride through serious DC faults,thus it is very suitable for multi-terminal flexible HVDC applications.However,no references have reported the locat...Full-Bridge Modular Multilevel Converter(FBMMC) has strong ability to ride through serious DC faults,thus it is very suitable for multi-terminal flexible HVDC applications.However,no references have reported the locating and isolating of DC faults and corresponding DC faults ride-through capability evaluation index.This paper introduces the topology mechanism of FBMMC and its loss reduction operation mode,theoretically certifies that the universal decoupled control strategy of Voltage Source Converter(VSC) and the similar modulation strategies of Half-Bridge MMC(HBMMC) can be applied to FBMMC for constructing complete closed-loop control system.On the basis of the existing DC faults locating and isolating schemes of 2-level VSC based Multi-Terminal HVDC(VSC-MTDC) system and the particularity of FBMMC,this paper proposes the DC faults wire selection "handshaking" method of the FBMMC-MTDC system,and proposes the DC Fault Ride-Through Capability Index(DFRTI) for evaluating the DC faults suppressing capability of the VSC-MTDC systems,including FBMMC-MTDC.Simulations of FBMMC-MTDC in PSCAD/EMTDC validate the correctness and effectiveness of the proposed control strategy and evaluation index.展开更多
文摘无变压器型光伏逆变系统中的漏电流高于300 m A时规定必须在0.3 s内从电网中切除。为解决系统中脉动共模电压引起的漏电流问题,提出新型七开关逆变拓扑(H7),该拓扑在直流输入端引入两个高频开关管,续流阶段确保直交两侧完全解耦,维持共模电压的恒定。在调制方法上,还可以实现倍频SPWM策略,降低电流纹波。在任意模态中开关管始终交错工作,有助于热应力均衡。最后,通过2 k W的样机平台验证了抑制后漏电流峰值仅为60 m A,相对于传统拓扑性能更优越,提高了系统的安全裕度。
基金supported by the National Natural Science Foundation of China (Grant No. 51177042)the Key Project of the National Twelfth FiveYear Research Program of China (Grant No. 2010BAA01B01)
文摘Full-Bridge Modular Multilevel Converter(FBMMC) has strong ability to ride through serious DC faults,thus it is very suitable for multi-terminal flexible HVDC applications.However,no references have reported the locating and isolating of DC faults and corresponding DC faults ride-through capability evaluation index.This paper introduces the topology mechanism of FBMMC and its loss reduction operation mode,theoretically certifies that the universal decoupled control strategy of Voltage Source Converter(VSC) and the similar modulation strategies of Half-Bridge MMC(HBMMC) can be applied to FBMMC for constructing complete closed-loop control system.On the basis of the existing DC faults locating and isolating schemes of 2-level VSC based Multi-Terminal HVDC(VSC-MTDC) system and the particularity of FBMMC,this paper proposes the DC faults wire selection "handshaking" method of the FBMMC-MTDC system,and proposes the DC Fault Ride-Through Capability Index(DFRTI) for evaluating the DC faults suppressing capability of the VSC-MTDC systems,including FBMMC-MTDC.Simulations of FBMMC-MTDC in PSCAD/EMTDC validate the correctness and effectiveness of the proposed control strategy and evaluation index.