Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing t...Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC dual-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 nun stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min-1 strike frequency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.展开更多
VFT (variable frequency transformer) has been recently used as art alternative to HVDC (high voltage direct current) to control power flow between asynchronous networks. VFT consumes less reactive power than a bac...VFT (variable frequency transformer) has been recently used as art alternative to HVDC (high voltage direct current) to control power flow between asynchronous networks. VFT consumes less reactive power than a back-to-back HVDC system, provides faster initial transient recovery, and has better natural damping capability. VFT is simply a DFIM (doubly-fed induction machine) where the machine torque controls the power flow from stator to rotor and vice versa. The main disadvantage of this VFT is the slip rings and brushes required for the rotor circuit, especially in bulk power transmission. The BDFM (brushless doubly-fed machine) with nested cage rotor machine is proved to be a comparable alternative to conventional DFIM in many applications with the advantage that all windings being in the stator frame with fixed output terminals. In this paper, the BDFM is used as a BVFT (brushless variable frequency transformer). A prototype machine is designed and simulated to verify the system validity.展开更多
The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid sp...The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order to further improve dynamic behavior. It compensates the load torque influence on the speed control setting a feed forward torque reference value. The benefits are twice; the speed controller reaches the speed reference value without offsets which would need to be compensated by an integrator and a better response to load torque variations is obtained since they are detected and compensated leading to small speed variations. Moreover, the influence of pararneter errors and disturbances has been analyzed and limited so that they play a minor role in operation.展开更多
基金Funded by the Natural Science Foundation of Hubei Province (No. 2004AA101E04)
文摘Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC dual-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 nun stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min-1 strike frequency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.
文摘VFT (variable frequency transformer) has been recently used as art alternative to HVDC (high voltage direct current) to control power flow between asynchronous networks. VFT consumes less reactive power than a back-to-back HVDC system, provides faster initial transient recovery, and has better natural damping capability. VFT is simply a DFIM (doubly-fed induction machine) where the machine torque controls the power flow from stator to rotor and vice versa. The main disadvantage of this VFT is the slip rings and brushes required for the rotor circuit, especially in bulk power transmission. The BDFM (brushless doubly-fed machine) with nested cage rotor machine is proved to be a comparable alternative to conventional DFIM in many applications with the advantage that all windings being in the stator frame with fixed output terminals. In this paper, the BDFM is used as a BVFT (brushless variable frequency transformer). A prototype machine is designed and simulated to verify the system validity.
文摘The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order to further improve dynamic behavior. It compensates the load torque influence on the speed control setting a feed forward torque reference value. The benefits are twice; the speed controller reaches the speed reference value without offsets which would need to be compensated by an integrator and a better response to load torque variations is obtained since they are detected and compensated leading to small speed variations. Moreover, the influence of pararneter errors and disturbances has been analyzed and limited so that they play a minor role in operation.