Objective To devellop directly molecular evolution Of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremelly slow and are unable to nitrify effectively inorganic nitrogen in wastew...Objective To devellop directly molecular evolution Of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremelly slow and are unable to nitrify effectively inorganic nitrogen in wastewater treatmem. Methods The norB gene coding the ntitrite oxido-reductase in nitrobacteria was cloned and sequenced. Then, directed molecular evolution of nitrite oxido-reductase was developed by DNA-shuffling of 15 norB genes from different nitrobacteria. Results After DNA-shuffling with sexual PeR and staggered extension process PCR, the sequence was differem from its parental DNA fragmems and the homology ranged from 98% to 99%. The maximum nitrification rate of the modified bacterium of X16 by DNA-shuffling was up to 42.9 mg/L.d, which was almost 10 times higher than that of its parental bacteria. Furthermore, the modified bacterium had the same characteristics of its parental bacteria of E. coli and could grow rapidly in normal cultures. Conclusion DNA-shuffling was successfully used to engineer E. coli, which had norB gene and could degrade inorganic nitrogen effectively.展开更多
基金This study was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2001AA214191).
文摘Objective To devellop directly molecular evolution Of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremelly slow and are unable to nitrify effectively inorganic nitrogen in wastewater treatmem. Methods The norB gene coding the ntitrite oxido-reductase in nitrobacteria was cloned and sequenced. Then, directed molecular evolution of nitrite oxido-reductase was developed by DNA-shuffling of 15 norB genes from different nitrobacteria. Results After DNA-shuffling with sexual PeR and staggered extension process PCR, the sequence was differem from its parental DNA fragmems and the homology ranged from 98% to 99%. The maximum nitrification rate of the modified bacterium of X16 by DNA-shuffling was up to 42.9 mg/L.d, which was almost 10 times higher than that of its parental bacteria. Furthermore, the modified bacterium had the same characteristics of its parental bacteria of E. coli and could grow rapidly in normal cultures. Conclusion DNA-shuffling was successfully used to engineer E. coli, which had norB gene and could degrade inorganic nitrogen effectively.