Let Fq be the finite field of q elements and f be a nonzero polynomial over Fq. For each b ∈ Fq, let Nq(f = b) denote the number of Fq-rational points on the affine hypersurface f = b. We obtain the formula of Nq(...Let Fq be the finite field of q elements and f be a nonzero polynomial over Fq. For each b ∈ Fq, let Nq(f = b) denote the number of Fq-rational points on the affine hypersurface f = b. We obtain the formula of Nq(f= b) for a class of hypersurfaces over Fq by using the greatest invariant factors of degree matrices under certain cases, which generalizes the previously known results. We also give another simple direct proof to the known results.展开更多
基金The authors would like to give thanks to the referees for many helpful suggestions. This work was jointly supported by the National Natural Science Foundation of China (11371208), Zhejiang Provincial Natural Science Foundation of China (LY17A010008) and Ningbo Natural Science Foundation (2017A610134), and sponsored by the K. C. Wong Magna Fund in Ningbo University.
文摘Let Fq be the finite field of q elements and f be a nonzero polynomial over Fq. For each b ∈ Fq, let Nq(f = b) denote the number of Fq-rational points on the affine hypersurface f = b. We obtain the formula of Nq(f= b) for a class of hypersurfaces over Fq by using the greatest invariant factors of degree matrices under certain cases, which generalizes the previously known results. We also give another simple direct proof to the known results.