This paper aims to explore urban geography with a new perspective. Endowed with the urban geography connotations, an improved data field model is employed to integrate temporal dimension into spatial process of cities...This paper aims to explore urban geography with a new perspective. Endowed with the urban geography connotations, an improved data field model is employed to integrate temporal dimension into spatial process of cities in a typical region in this article. Taking the Beijing-Shanghai Corridor including 18 cities as an example, the authors chose the city centricity index (CCI) and the spatial data field model to analyze the evolution process and features of sub-region and urban spatial interaction in this corridor based on the data of 1991, 1996 and 2002. Through the analy- sis, we found that: 1) with the improvement of the urbanization level and the development of urban economy, the cit- ies’ CCI grew, the urban spatial radiative potential enhanced and the radiative range expanded gradually, which reflects the urban spatial interaction’s intensity has been increasing greatly; 2) although the spatial interaction intensity among the cities and sub-regions in the Beijing-Shanghai Corridor was growing constantly, the gap of the spatial interaction strength among different cities and sub-regions was widening, and the spatial division between the developed areas and the less developed areas was obvious; and 3) the intensity of the spatial interaction of Beijing, Shanghai and their urban agglomerations was far greater than that in small cities of other parts of the corridor, and it may have a strong drive force on the choice of spatial location of the economic activities.展开更多
There are many automatic organization phenomena and automatic organization unities in the universe. The automatic organization whole refers to a life body with the thinking. The thinking is the core of automatic organ...There are many automatic organization phenomena and automatic organization unities in the universe. The automatic organization whole refers to a life body with the thinking. The thinking is the core of automatic organization. The thinking is at eternal restless motion and binds to substances. The universe, organism and society are the automatic organization unities or life systems with the thinking. The thinking can perceive, attract, drive, organize and control all individuals and it is a force of life structure or universal gravitation and universal repulsion. The thinking has a life structure, a template and dynamic of entity-life's automatic organization. Life body has five dynamic systems: the thinking motion and information flow, breathing motion, closed-loop current (particle flow) and energy flow, interaction among state-varying, state-stabilizing and control organizations and active & automatic chemical-physical reactions, cardiac pulsation and active motion and transportation. Human, galaxies and society can change from low to high energy state initiatively. This is realized by controlling the desires of life entity via the thinking and breathing motions and by altering the body's binding forces dominating the life entity (in turn, by bond force, strong interaction and quark confinement). All forces in the universe present in the universe of life: force of the thinking-universal gravitation and universal repulsion, electromagnetic interaction, bond force, strong interaction, quark confinement and weak interaction. Under the automatic organization of the thinking, these forces bind into a 4-season' whole. The united state of these forces is controlled by the thinking and breathing motion, which is capable of changing from 3-, 2- and 1-dimensional states to a 0-dimensional state.展开更多
Gold catalysts have been reported as highly effective catalysts in various oxidation reactions.However,for chemoselective hydrogenation reactions,gold‐based catalysts normally show much lowercatalytic activity than p...Gold catalysts have been reported as highly effective catalysts in various oxidation reactions.However,for chemoselective hydrogenation reactions,gold‐based catalysts normally show much lowercatalytic activity than platinum group metals,even though their selectivities are excellent.Here,wereport that the chemoselective hydrogenation activity of 3‐nitrostyrene to 3‐vinylaniline overAu/TiO_(2)can be enhanced up to 3.3 times through the hydrogen reduction strategy.It is revealedthat strong metal‐support interaction,between gold nanoparticles(NPs)and TiO_(2)support,is introducedthrough hydrogen reduction,resulting in partial dispersion of reduced TiOx on the Au surface.The partially covered Au not only increases the perimeter of the interface between the gold NPs andthe support,but also benefits H_(2)activation.Reaction kinetic analysis and H_(2)‐D2 exchange reactionshow that H_(2)activation is the critical step in the hydrogenation of 3‐nitrostyrene to 3‐vinylaniline.Density functional theory calculations verify that hydrogen dissociation and hydrogen transfer arefavored at the interface of gold NPs and TiO_(2)over the hydrogen‐reduced Au/TiO_(2).This study providesinsights for fabricating highly active gold‐based catalysts for chemoselective hydrogenationreactions.展开更多
Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated...Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated and poly(vinyl alcohol)‐protected reduction methods, respectively.The meso‐Mn2O3 had a high surface area, i.e., 106 m2/g, and a cubic crystal structure. Noble‐metalnanoparticles (NPs) of size 2.1?2.8 nm were uniformly dispersed on the meso‐Mn2O3 surfaces. AlloyingPd with Pt enhanced the catalytic activity in methane combustion; 1.41(Pd5.1Pt)/meso‐Mn2O3gave the best performance; T10%, T50%, and T90% (the temperatures required for achieving methaneconversions of 10%, 50%, and 90%) were 265, 345, and 425 °C, respectively, at a space velocity of20000 mL/(g?h). The effects of SO2, CO2, H2O, and NO on methane combustion over1.41(Pd5.1Pt)/meso‐Mn2O3 were also examined. We conclude that the good catalytic performance of1.41(Pd5.1Pt)/meso‐Mn2O3 is associated with its high‐quality porous structure, high adsorbed oxygen species concentration, good low‐temperature reducibility, and strong interactions between Pd‐Pt alloy NPs and the meso‐Mn2O3 support.展开更多
The magnetization of two interacting electrons confined in a quantum dot presented in a magnetic field had been calculated by solving the relative Hamiltonian using variational method. We had investigated the dependen...The magnetization of two interacting electrons confined in a quantum dot presented in a magnetic field had been calculated by solving the relative Hamiltonian using variational method. We had investigated the dependence of the magnetization on temperature, magnetic field strength and confining frequency. The singlet-triplet transitions in the ground state of the quantum dot spectra and the corresponding jumps in the magnetization curves had been shown. The comparisons show that our results are in very good agreement with reported works.展开更多
Boosting the alkaline hydrogen evolution and oxidation reaction(HER/HOR)kinetics is vital to practicing the renewable hydrogen cycle in alkaline media.Recently,intensive research has demonstrated that interface engine...Boosting the alkaline hydrogen evolution and oxidation reaction(HER/HOR)kinetics is vital to practicing the renewable hydrogen cycle in alkaline media.Recently,intensive research has demonstrated that interface engineering is of critical significance for improving the performance of heterostructured electrocatalysts particularly toward the electrochemical reactions involving multiple reaction intermediates like alkaline hydrogen electrocatalysis,and the research advances also bring substantial non-trivial fundamental insights accordingly.Herein,we review the current status of interface engineering with respect to developing efficient heterostructured electrocatalysts for alkaline HER and HOR.Two major subjects—how interface engineering promotes the reaction kinetics and what fundamental insights interface engineering has brought into alkaline HER and HOR—are discussed.Specifically,heterostructured electrocatalysts with abundant interfaces have shown substantially accelerated alkaline hydrogen electrocatalysis kinetics owing to the synergistic effect from different components,which could balance the adsorption/desorption behaviors of the intermediates at the interfaces.Meanwhile,interface engineering can effectively tune the electronic structures of the active sites via electronic interaction,interfacial bonding,and lattice strain,which would appropriately optimize the binding energy of targeted intermediates like hydrogen.Furthermore,the confinement effect is critical for delivering high durability by sustaining high density of active sites.At last,our own perspectives on the challenges and opportunities toward developing efficient heterostructured electrocatalysts for alkaline hydrogen electrocatalysis are provided.展开更多
We present a facile and controllable method for the large-scale fabrication of highly-ordered octahedral Fe3O4 colloidal "single crystals" without the assistance of a substrate. Oleic acid is used to reduce the solu...We present a facile and controllable method for the large-scale fabrication of highly-ordered octahedral Fe3O4 colloidal "single crystals" without the assistance of a substrate. Oleic acid is used to reduce the solubility of the nano-building blocks in colloidal solution and to induce a "crystallization" process. Our colloidal crystals are of multimicron size and show typical crystallographic characteristics. They have a very robust structure and can serve as a novel ordered magnetic mesoporous material with a relatively narrow pore size distribution. The sample possesses an extremely high Verwey transition temperature (Tv) of 100 K and a high saturation magnetization (Ms) of 86 emu/g at 5 K based on its good crystallinity, as well as the interparticle dipolar interaction behavior arising from its unique structure. Electrochemical measurements have demonstrated the excellent capacity of the mesoporous colloidal crystals when used in lithium-ion batteries.展开更多
The exchange bias is of technological significance in magnetic recording and spintronic devices.Pursuing a large bias field is a long-term goal for the research field of magnetic shape memory alloys.In this work,a lar...The exchange bias is of technological significance in magnetic recording and spintronic devices.Pursuing a large bias field is a long-term goal for the research field of magnetic shape memory alloys.In this work,a large bias field of 0.53 T is achieved in the Ni50Mn34In16-xFex(x=1,3,5)system by tuning the magnetic ground state(determined by the composition x)and the magnetic-field history(determined by the magnetic field HFCduring field cooling and the maximum field HMaxduring isothermal magnetization).The maximum volume fraction of the interfaces between the ferromagnetic clusters and antiferromagnetic matrix and the strong interfacial interaction are achieved by tuning the magnetic ground state and the magnetic-field history,which results in strong magnetic unidirectional anisotropy and the large exchange bias.Moreover,two guidelines were proposed to obtain the large bias field.Firstly,the composition with a magnetic ground state consisting of the dilute spin glass and the strong antiferromagnetic matrix is preferred to obtain a large bias field;secondly,tuning the magnetic-field history by enhancing HFCand reducing HMaxis beneficial to achieving large exchange bias.Our work provides an effective way for designing magnetically inhomogeneous compounds with large exchange bias.展开更多
Molecular dynamic simulations are performed to study the nanoscratching behavior of polymers.The effects of scratching depth,scratching velocity and indenter/polymer interaction strength are investigated.It is found t...Molecular dynamic simulations are performed to study the nanoscratching behavior of polymers.The effects of scratching depth,scratching velocity and indenter/polymer interaction strength are investigated.It is found that polymer material in the scratching zone around the indenter can be removed in a ductile manner as the local temperature in the scratching zone exceeds glass transition temperature Tg.The recovery of polymer can be more significant when the temperature approaches or exceeds Tg.The tangential force,normal force and friction coefficient increase as the scratching depth increases.A larger scratching velocity leads to more material deformation and higher pile-up.The tangential force and normal force are larger for a larger scratching velocity whereas the friction coefficient is almost independent of the scratching velocities studied.It is also found that stronger indenter/polymer interaction strength results in a larger tangential force and friction coefficient.展开更多
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40635026)National Natural Science Foundation of China (No. 40701045)
文摘This paper aims to explore urban geography with a new perspective. Endowed with the urban geography connotations, an improved data field model is employed to integrate temporal dimension into spatial process of cities in a typical region in this article. Taking the Beijing-Shanghai Corridor including 18 cities as an example, the authors chose the city centricity index (CCI) and the spatial data field model to analyze the evolution process and features of sub-region and urban spatial interaction in this corridor based on the data of 1991, 1996 and 2002. Through the analy- sis, we found that: 1) with the improvement of the urbanization level and the development of urban economy, the cit- ies’ CCI grew, the urban spatial radiative potential enhanced and the radiative range expanded gradually, which reflects the urban spatial interaction’s intensity has been increasing greatly; 2) although the spatial interaction intensity among the cities and sub-regions in the Beijing-Shanghai Corridor was growing constantly, the gap of the spatial interaction strength among different cities and sub-regions was widening, and the spatial division between the developed areas and the less developed areas was obvious; and 3) the intensity of the spatial interaction of Beijing, Shanghai and their urban agglomerations was far greater than that in small cities of other parts of the corridor, and it may have a strong drive force on the choice of spatial location of the economic activities.
文摘There are many automatic organization phenomena and automatic organization unities in the universe. The automatic organization whole refers to a life body with the thinking. The thinking is the core of automatic organization. The thinking is at eternal restless motion and binds to substances. The universe, organism and society are the automatic organization unities or life systems with the thinking. The thinking can perceive, attract, drive, organize and control all individuals and it is a force of life structure or universal gravitation and universal repulsion. The thinking has a life structure, a template and dynamic of entity-life's automatic organization. Life body has five dynamic systems: the thinking motion and information flow, breathing motion, closed-loop current (particle flow) and energy flow, interaction among state-varying, state-stabilizing and control organizations and active & automatic chemical-physical reactions, cardiac pulsation and active motion and transportation. Human, galaxies and society can change from low to high energy state initiatively. This is realized by controlling the desires of life entity via the thinking and breathing motions and by altering the body's binding forces dominating the life entity (in turn, by bond force, strong interaction and quark confinement). All forces in the universe present in the universe of life: force of the thinking-universal gravitation and universal repulsion, electromagnetic interaction, bond force, strong interaction, quark confinement and weak interaction. Under the automatic organization of the thinking, these forces bind into a 4-season' whole. The united state of these forces is controlled by the thinking and breathing motion, which is capable of changing from 3-, 2- and 1-dimensional states to a 0-dimensional state.
文摘Gold catalysts have been reported as highly effective catalysts in various oxidation reactions.However,for chemoselective hydrogenation reactions,gold‐based catalysts normally show much lowercatalytic activity than platinum group metals,even though their selectivities are excellent.Here,wereport that the chemoselective hydrogenation activity of 3‐nitrostyrene to 3‐vinylaniline overAu/TiO_(2)can be enhanced up to 3.3 times through the hydrogen reduction strategy.It is revealedthat strong metal‐support interaction,between gold nanoparticles(NPs)and TiO_(2)support,is introducedthrough hydrogen reduction,resulting in partial dispersion of reduced TiOx on the Au surface.The partially covered Au not only increases the perimeter of the interface between the gold NPs andthe support,but also benefits H_(2)activation.Reaction kinetic analysis and H_(2)‐D2 exchange reactionshow that H_(2)activation is the critical step in the hydrogenation of 3‐nitrostyrene to 3‐vinylaniline.Density functional theory calculations verify that hydrogen dissociation and hydrogen transfer arefavored at the interface of gold NPs and TiO_(2)over the hydrogen‐reduced Au/TiO_(2).This study providesinsights for fabricating highly active gold‐based catalysts for chemoselective hydrogenationreactions.
基金supported by the Ph.D.Program Foundation of Ministry of Education of China(20131103110002)the NNSF of China(21377008)+2 种基金National High Technology Research and Development Program(863 Program,2015AA034603)Foundation on the Creative Research Team Con-struction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Plat-form-National Materials Research Base Construction~~
文摘Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated and poly(vinyl alcohol)‐protected reduction methods, respectively.The meso‐Mn2O3 had a high surface area, i.e., 106 m2/g, and a cubic crystal structure. Noble‐metalnanoparticles (NPs) of size 2.1?2.8 nm were uniformly dispersed on the meso‐Mn2O3 surfaces. AlloyingPd with Pt enhanced the catalytic activity in methane combustion; 1.41(Pd5.1Pt)/meso‐Mn2O3gave the best performance; T10%, T50%, and T90% (the temperatures required for achieving methaneconversions of 10%, 50%, and 90%) were 265, 345, and 425 °C, respectively, at a space velocity of20000 mL/(g?h). The effects of SO2, CO2, H2O, and NO on methane combustion over1.41(Pd5.1Pt)/meso‐Mn2O3 were also examined. We conclude that the good catalytic performance of1.41(Pd5.1Pt)/meso‐Mn2O3 is associated with its high‐quality porous structure, high adsorbed oxygen species concentration, good low‐temperature reducibility, and strong interactions between Pd‐Pt alloy NPs and the meso‐Mn2O3 support.
文摘The magnetization of two interacting electrons confined in a quantum dot presented in a magnetic field had been calculated by solving the relative Hamiltonian using variational method. We had investigated the dependence of the magnetization on temperature, magnetic field strength and confining frequency. The singlet-triplet transitions in the ground state of the quantum dot spectra and the corresponding jumps in the magnetization curves had been shown. The comparisons show that our results are in very good agreement with reported works.
基金funding support from “Hundred Talents Program” of Zhejiang University, Chinapartially supported by the Australian Research Council (ARC) Discovery Project (DP200100365)
文摘Boosting the alkaline hydrogen evolution and oxidation reaction(HER/HOR)kinetics is vital to practicing the renewable hydrogen cycle in alkaline media.Recently,intensive research has demonstrated that interface engineering is of critical significance for improving the performance of heterostructured electrocatalysts particularly toward the electrochemical reactions involving multiple reaction intermediates like alkaline hydrogen electrocatalysis,and the research advances also bring substantial non-trivial fundamental insights accordingly.Herein,we review the current status of interface engineering with respect to developing efficient heterostructured electrocatalysts for alkaline HER and HOR.Two major subjects—how interface engineering promotes the reaction kinetics and what fundamental insights interface engineering has brought into alkaline HER and HOR—are discussed.Specifically,heterostructured electrocatalysts with abundant interfaces have shown substantially accelerated alkaline hydrogen electrocatalysis kinetics owing to the synergistic effect from different components,which could balance the adsorption/desorption behaviors of the intermediates at the interfaces.Meanwhile,interface engineering can effectively tune the electronic structures of the active sites via electronic interaction,interfacial bonding,and lattice strain,which would appropriately optimize the binding energy of targeted intermediates like hydrogen.Furthermore,the confinement effect is critical for delivering high durability by sustaining high density of active sites.At last,our own perspectives on the challenges and opportunities toward developing efficient heterostructured electrocatalysts for alkaline hydrogen electrocatalysis are provided.
文摘We present a facile and controllable method for the large-scale fabrication of highly-ordered octahedral Fe3O4 colloidal "single crystals" without the assistance of a substrate. Oleic acid is used to reduce the solubility of the nano-building blocks in colloidal solution and to induce a "crystallization" process. Our colloidal crystals are of multimicron size and show typical crystallographic characteristics. They have a very robust structure and can serve as a novel ordered magnetic mesoporous material with a relatively narrow pore size distribution. The sample possesses an extremely high Verwey transition temperature (Tv) of 100 K and a high saturation magnetization (Ms) of 86 emu/g at 5 K based on its good crystallinity, as well as the interparticle dipolar interaction behavior arising from its unique structure. Electrochemical measurements have demonstrated the excellent capacity of the mesoporous colloidal crystals when used in lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(51471127,51431007 and 51371134)the Program for Young Scientific New-star in Shaanxi Province of China(2014KJXX-35)+2 种基金the Innovation Capability Support Program of Shaanxi(2018PT-28 and 2017KTPT-04)Shenzhen Science and Technology Project(JCYJ20180507182246321)the Fundamental Research Funds for Central Universities of China。
文摘The exchange bias is of technological significance in magnetic recording and spintronic devices.Pursuing a large bias field is a long-term goal for the research field of magnetic shape memory alloys.In this work,a large bias field of 0.53 T is achieved in the Ni50Mn34In16-xFex(x=1,3,5)system by tuning the magnetic ground state(determined by the composition x)and the magnetic-field history(determined by the magnetic field HFCduring field cooling and the maximum field HMaxduring isothermal magnetization).The maximum volume fraction of the interfaces between the ferromagnetic clusters and antiferromagnetic matrix and the strong interfacial interaction are achieved by tuning the magnetic ground state and the magnetic-field history,which results in strong magnetic unidirectional anisotropy and the large exchange bias.Moreover,two guidelines were proposed to obtain the large bias field.Firstly,the composition with a magnetic ground state consisting of the dilute spin glass and the strong antiferromagnetic matrix is preferred to obtain a large bias field;secondly,tuning the magnetic-field history by enhancing HFCand reducing HMaxis beneficial to achieving large exchange bias.Our work provides an effective way for designing magnetically inhomogeneous compounds with large exchange bias.
基金supported by the National Natural Science Foundation of China (Grant No.90923038)the National Basic Research Program of China (Grant No.2011CB706703)+1 种基金"111"project (Grant No.B07014)by the State Administration of Foreign Experts Affairs and the Ministry of Education of China
文摘Molecular dynamic simulations are performed to study the nanoscratching behavior of polymers.The effects of scratching depth,scratching velocity and indenter/polymer interaction strength are investigated.It is found that polymer material in the scratching zone around the indenter can be removed in a ductile manner as the local temperature in the scratching zone exceeds glass transition temperature Tg.The recovery of polymer can be more significant when the temperature approaches or exceeds Tg.The tangential force,normal force and friction coefficient increase as the scratching depth increases.A larger scratching velocity leads to more material deformation and higher pile-up.The tangential force and normal force are larger for a larger scratching velocity whereas the friction coefficient is almost independent of the scratching velocities studied.It is also found that stronger indenter/polymer interaction strength results in a larger tangential force and friction coefficient.