期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种用于相似图象识别的光电混合处理系统 被引量:4
1
作者 王应宗 霍义萍 +2 位作者 杜艳丽 戴海涛 尹宝银 《光子学报》 EI CAS CSCD 北大核心 2002年第9期1143-1145,共3页
针对以传统的光学相关为基础的图像识别难以识别相似图形的缺陷 ,提出并构建了解决这类问题的一种光电混合系统 .该系统不仅结构简单 ,处理具有准实时的特点 ,而且实验结果表明这一系统对微小差异图形有很强的识别功能 .
关键词 相似图象识别 特征识别 自相关 互相关 光电混合处理
下载PDF
Recognition of Similar Weather Scenarios in Terminal Area Based on Contrastive Learning 被引量:2
2
作者 CHEN Haiyan LIU Zhenya +1 位作者 ZHOU Yi YUAN Ligang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第4期425-433,共9页
In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is design... In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is designed to improve the number and quality of weather scenarios samples according to the characteristics of convective weather images.Secondly,in the pre-trained recognition model of SWS-CL,a loss function is formulated to minimize the distance between the anchor and positive samples,and maximize the distance between the anchor and the negative samples in the latent space.Finally,the pre-trained SWS-CL model is fine-tuned with labeled samples to improve the recognition accuracy of SWS.The comparative experiments on the weather images of Guangzhou terminal area show that the proposed data augmentation method can effectively improve the quality of weather image dataset,and the proposed SWS-CL model can achieve satisfactory recognition accuracy.It is also verified that the fine-tuned SWS-CL model has obvious advantages in datasets with sparse labels. 展开更多
关键词 air traffic control terminal area similar weather scenarios(SWSs) image recognition contrastive learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部