对不同故障下光伏组件内部等效参数和外特性电气参数进行特征提取,分别采用改进人工鱼群算法优化径向基函数神经网络(improved artificial fish swarm algorithm-radical basic function neural network,IAFSA-RBFNN)算法和相关向量机(r...对不同故障下光伏组件内部等效参数和外特性电气参数进行特征提取,分别采用改进人工鱼群算法优化径向基函数神经网络(improved artificial fish swarm algorithm-radical basic function neural network,IAFSA-RBFNN)算法和相关向量机(relevance vector machine,RVM)算法,建立了基于内部等效参数和外特性电气参数的4种光伏组件故障诊断模型,用于光伏组件的初步故障诊断。在此基础上,提出了一种基于改进证据相似度的光伏组件数据融合故障诊断模型,将上述4种模型的诊断结果作为该改进数据融合算法的基本概率分配(basic probability assignment,BPA)函数值,在决策层进行融合诊断输出,仿真和实验结果验证了上述方法可有效提高故障诊断的精度。展开更多
针对如何在大规模构件库中改善构件检索性能的问题,提出一种基于功能倒排索引与改进VSM(Vector Space Model)相似度的构件检索方法。应用功能倒排索引能够快速排除在功能上不相关的构件,有效缩小构件检索范围;对VSM相似度算法进行改进,...针对如何在大规模构件库中改善构件检索性能的问题,提出一种基于功能倒排索引与改进VSM(Vector Space Model)相似度的构件检索方法。应用功能倒排索引能够快速排除在功能上不相关的构件,有效缩小构件检索范围;对VSM相似度算法进行改进,提高构件检索的查准率。与常用检索方法的对比实验表明,该方法有效提高了检索速度,并且检索查全率与查准率也保持在较高水平。展开更多
多方隐私保护下的记录链接(privacy-preserving record linkage,简称PPRL)是在隐私保护下,从多个数据源中找出代表现实世界中同一实体的过程.该过程除了最终匹配结果被数据源之间共享外,其他信息均未被泄露.随着数据量的日益增大和现实...多方隐私保护下的记录链接(privacy-preserving record linkage,简称PPRL)是在隐私保护下,从多个数据源中找出代表现实世界中同一实体的过程.该过程除了最终匹配结果被数据源之间共享外,其他信息均未被泄露.随着数据量的日益增大和现实世界数据质量问题的存在(如拼写错误、顺序颠倒等),多方PPRL方法的可扩展性和容错性面临挑战.目前,已有的大部分多方PPRL方法都是精确匹配方法,不具有容错性.还有少部分多方PPRL近似方法具有容错性,但在处理存在质量问题的数据时,由于容错性差和时间代价过大,并不能有效地找出数据源间的共同实体.因此,提出一种结合布隆过滤、安全合计、动态阈值、检查机制和改进的Dice相似度函数的多方PPRL近似方法.首先,利用布隆过滤将各数据源中的每条记录信息转换成由0和1组成的位数组.然后,计算每个对应位置bit 1所占的比率,并利用动态阈值和检查机制来判定匹配成功的位置.最后,通过改进的Dice相似度函数计算出记录间的相似度,进而判断记录间是否匹配成功.实验结果表明:所提出的方法具有较好的可扩展性,并且在保证查准率的同时,比已有的多方近似PPRL方法具有更高的容错性.展开更多
文摘对不同故障下光伏组件内部等效参数和外特性电气参数进行特征提取,分别采用改进人工鱼群算法优化径向基函数神经网络(improved artificial fish swarm algorithm-radical basic function neural network,IAFSA-RBFNN)算法和相关向量机(relevance vector machine,RVM)算法,建立了基于内部等效参数和外特性电气参数的4种光伏组件故障诊断模型,用于光伏组件的初步故障诊断。在此基础上,提出了一种基于改进证据相似度的光伏组件数据融合故障诊断模型,将上述4种模型的诊断结果作为该改进数据融合算法的基本概率分配(basic probability assignment,BPA)函数值,在决策层进行融合诊断输出,仿真和实验结果验证了上述方法可有效提高故障诊断的精度。
文摘针对如何在大规模构件库中改善构件检索性能的问题,提出一种基于功能倒排索引与改进VSM(Vector Space Model)相似度的构件检索方法。应用功能倒排索引能够快速排除在功能上不相关的构件,有效缩小构件检索范围;对VSM相似度算法进行改进,提高构件检索的查准率。与常用检索方法的对比实验表明,该方法有效提高了检索速度,并且检索查全率与查准率也保持在较高水平。
文摘多方隐私保护下的记录链接(privacy-preserving record linkage,简称PPRL)是在隐私保护下,从多个数据源中找出代表现实世界中同一实体的过程.该过程除了最终匹配结果被数据源之间共享外,其他信息均未被泄露.随着数据量的日益增大和现实世界数据质量问题的存在(如拼写错误、顺序颠倒等),多方PPRL方法的可扩展性和容错性面临挑战.目前,已有的大部分多方PPRL方法都是精确匹配方法,不具有容错性.还有少部分多方PPRL近似方法具有容错性,但在处理存在质量问题的数据时,由于容错性差和时间代价过大,并不能有效地找出数据源间的共同实体.因此,提出一种结合布隆过滤、安全合计、动态阈值、检查机制和改进的Dice相似度函数的多方PPRL近似方法.首先,利用布隆过滤将各数据源中的每条记录信息转换成由0和1组成的位数组.然后,计算每个对应位置bit 1所占的比率,并利用动态阈值和检查机制来判定匹配成功的位置.最后,通过改进的Dice相似度函数计算出记录间的相似度,进而判断记录间是否匹配成功.实验结果表明:所提出的方法具有较好的可扩展性,并且在保证查准率的同时,比已有的多方近似PPRL方法具有更高的容错性.