This paper presents an architecture of a hybrid recommender system in E-commerce environment. The goal of the system is to make special improvements in giving precisely personalized recommendation through some effecti...This paper presents an architecture of a hybrid recommender system in E-commerce environment. The goal of the system is to make special improvements in giving precisely personalized recommendation through some effective measures. Based on the study on the existing recommendation methods of both the conventional similarity function and the conventional feedback function, several improvement algorithms are developed to enhance the precision of recommendation, which include three improved similarity functions, four improved feedback functions, and adoption of both explicit and implicit preferences in individual user profile. Among them, issues and countermeasures of a new user, prominent preferences and long-term preferences are nicely addressed to gain better recommendation. The users preferences is so designed to be precisely captured by a user-side agent, and can make self-adjustment with explicit or implicit feedback.展开更多
Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and d...Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and distance measure, and were proved. To calculate the degree of similarity of discrete data, relative degree between data and total distribution was obtained. Discrete data similarity measure was completed with combination of mentioned relative degrees. Power interconnected system with multi characteristics was considered to apply discrete similarity measure. Naturally, similarity measure was extended to multi-dimensional similarity measure case, and applied to bus clustering problem.展开更多
文摘This paper presents an architecture of a hybrid recommender system in E-commerce environment. The goal of the system is to make special improvements in giving precisely personalized recommendation through some effective measures. Based on the study on the existing recommendation methods of both the conventional similarity function and the conventional feedback function, several improvement algorithms are developed to enhance the precision of recommendation, which include three improved similarity functions, four improved feedback functions, and adoption of both explicit and implicit preferences in individual user profile. Among them, issues and countermeasures of a new user, prominent preferences and long-term preferences are nicely addressed to gain better recommendation. The users preferences is so designed to be precisely captured by a user-side agent, and can make self-adjustment with explicit or implicit feedback.
基金Project(2010-0020163) supported by Key Research Institute Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Korea
文摘Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and distance measure, and were proved. To calculate the degree of similarity of discrete data, relative degree between data and total distribution was obtained. Discrete data similarity measure was completed with combination of mentioned relative degrees. Power interconnected system with multi characteristics was considered to apply discrete similarity measure. Naturally, similarity measure was extended to multi-dimensional similarity measure case, and applied to bus clustering problem.