The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual...The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual ships. Therefore, when test data from ship models are directly applied to predict the performance of actual ships, test results must be subjected to empirical corrections. This study proposes a method for the reverse design of the hull model. Compared to a geometrically similar hull model, the wake field generated by the modified model is closer to that of an actual ship. A non-geometrically similar model of a Korean Research Institute of Ship and Ocean Engineering (KRISO)’s container ship (KCS) was designed. Numerical simulations were performed using this model, and its results were compared with full-scale calculation results. The deformation method of getting the wake field of full-scale ships by the non-geometrically similar model is applied to the KCS successfully.展开更多
Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil...Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil texture, soil salinity varies with short-term time. Thus, how to choose powerful environmental predictors is especially important for soil salinity. This paper presents a similarity-based prediction approach to map soil salinity and detects powerful environmental predictors for the Huanghe(Yellow) River Delta area in China. The similarity-based approach predicts the soil salinities of unsampled locations based on the environmental similarity between unsampled and sampled locations. A dataset of 92 points with salt data at depth of 30–40 cm was divided into two subsets for prediction and validation. Topographical parameters, soil textures, distances to irrigation channels and to the coastline, land surface temperature from Moderate Resolution Imaging Spectroradiometer(MODIS), Normalized Difference Vegetation Indices(NDVIs) and land surface reflectance data from Landsat Thematic Mapper(TM) imagery were generated. The similarity-based prediction approach was applied on several combinations of different environmental factors. Based on three evaluation indices including the correlation coefficient(CC) between observed and predicted values, the mean absolute error and the root mean squared error we found that elevation, distance to irrigation channels, soil texture, night land surface temperature, NDVI, and land surface reflectance Band 5 are the optimal combination for mapping soil salinity at the 30–40 cm depth in the study area(with a CC value of 0.69 and a root mean squared error value of 0.38). Our results indicated that the similarity-based prediction approach could be a vital alternative to other methods for mapping soil salinity, especially for area with limited observation data and could be used to monitor soil salinity distributions in the future.展开更多
Software defect prediction is aimed to find potential defects based on historical data and software features. Software features can reflect the characteristics of software modules. However, some of these features may ...Software defect prediction is aimed to find potential defects based on historical data and software features. Software features can reflect the characteristics of software modules. However, some of these features may be more relevant to the class (defective or non-defective), but others may be redundant or irrelevant. To fully measure the correlation between different features and the class, we present a feature selection approach based on a similarity measure (SM) for software defect prediction. First, the feature weights are updated according to the similarity of samples in different classes. Second, a feature ranking list is generated by sorting the feature weights in descending order, and all feature subsets are selected from the feature ranking list in sequence. Finally, all feature subsets are evaluated on a k-nearest neighbor (KNN) model and measured by an area under curve (AUC) metric for classification performance. The experiments are conducted on 11 National Aeronautics and Space Administration (NASA) datasets, and the results show that our approach performs better than or is comparable to the compared feature selection approaches in terms of classification performance.展开更多
基金the National Natural Science Foundation of China,the Fundamental Research Funds for the Central Universities,the Specialized Research Fund for the Doctoral Program of Higher Education
文摘The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual ships. Therefore, when test data from ship models are directly applied to predict the performance of actual ships, test results must be subjected to empirical corrections. This study proposes a method for the reverse design of the hull model. Compared to a geometrically similar hull model, the wake field generated by the modified model is closer to that of an actual ship. A non-geometrically similar model of a Korean Research Institute of Ship and Ocean Engineering (KRISO)’s container ship (KCS) was designed. Numerical simulations were performed using this model, and its results were compared with full-scale calculation results. The deformation method of getting the wake field of full-scale ships by the non-geometrically similar model is applied to the KCS successfully.
基金Under the auspices of Special Fund for Ocean Public Welfare Profession Scientific Research(No.201105020)National Natural Science Foundation of China(No.41471178,41023010,41431177)National Key Technology Innovation Project for Water Pollution Control and Remediation(No.2013ZX07103006)
文摘Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil texture, soil salinity varies with short-term time. Thus, how to choose powerful environmental predictors is especially important for soil salinity. This paper presents a similarity-based prediction approach to map soil salinity and detects powerful environmental predictors for the Huanghe(Yellow) River Delta area in China. The similarity-based approach predicts the soil salinities of unsampled locations based on the environmental similarity between unsampled and sampled locations. A dataset of 92 points with salt data at depth of 30–40 cm was divided into two subsets for prediction and validation. Topographical parameters, soil textures, distances to irrigation channels and to the coastline, land surface temperature from Moderate Resolution Imaging Spectroradiometer(MODIS), Normalized Difference Vegetation Indices(NDVIs) and land surface reflectance data from Landsat Thematic Mapper(TM) imagery were generated. The similarity-based prediction approach was applied on several combinations of different environmental factors. Based on three evaluation indices including the correlation coefficient(CC) between observed and predicted values, the mean absolute error and the root mean squared error we found that elevation, distance to irrigation channels, soil texture, night land surface temperature, NDVI, and land surface reflectance Band 5 are the optimal combination for mapping soil salinity at the 30–40 cm depth in the study area(with a CC value of 0.69 and a root mean squared error value of 0.38). Our results indicated that the similarity-based prediction approach could be a vital alternative to other methods for mapping soil salinity, especially for area with limited observation data and could be used to monitor soil salinity distributions in the future.
基金Project supported by the National Natural Science Foundation of China (Nos. 61673384 and 61502497), the Guangxi Key Laboratory of Trusted Software (No. kx201530), the China Postdoctoral Science Foundation (No. 2015M581887), and the Scientific Research Innovation Project for Graduate Students of Jiangsu Province, China (No. KYLX15 1443)
文摘Software defect prediction is aimed to find potential defects based on historical data and software features. Software features can reflect the characteristics of software modules. However, some of these features may be more relevant to the class (defective or non-defective), but others may be redundant or irrelevant. To fully measure the correlation between different features and the class, we present a feature selection approach based on a similarity measure (SM) for software defect prediction. First, the feature weights are updated according to the similarity of samples in different classes. Second, a feature ranking list is generated by sorting the feature weights in descending order, and all feature subsets are selected from the feature ranking list in sequence. Finally, all feature subsets are evaluated on a k-nearest neighbor (KNN) model and measured by an area under curve (AUC) metric for classification performance. The experiments are conducted on 11 National Aeronautics and Space Administration (NASA) datasets, and the results show that our approach performs better than or is comparable to the compared feature selection approaches in terms of classification performance.