期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于距离的相似最近邻搜索算法研究 被引量:2
1
作者 姜大光 孙贺娟 易军凯 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期94-98,共5页
为了提高相似最近邻搜索(ANN)算法的精度,提出了一种在度量空间下基于距离的相似最近邻搜索算法—优化的VP森林(OVF)算法。在传统VP树(VT)算法的基础上,首先采用改进的选择优势点的方法,通过从数据集采样优势点候选集,对其进行评估,选... 为了提高相似最近邻搜索(ANN)算法的精度,提出了一种在度量空间下基于距离的相似最近邻搜索算法—优化的VP森林(OVF)算法。在传统VP树(VT)算法的基础上,首先采用改进的选择优势点的方法,通过从数据集采样优势点候选集,对其进行评估,选取其中区分度大的点作为优势点;然后提出构建多棵VP树的新方法,改进距离优势点远的子树中最近邻不紧凑问题;接着提出使用优先队列与剪枝搜索方法结合的新搜索方法查找最近邻,减少了很多不必要的距离计算。最后通过实验结果表明,本文方法在数据维度、数据集大小、返回不同邻居个数、不同的距离函数及建树个数方面精度有了很大的提高。 展开更多
关键词 相似最近邻搜索(ANN)算法 VP树 优化的VP森林(OVF)算法 剪枝方法
下载PDF
一种相似性保持的线性嵌入哈希方法 被引量:2
2
作者 王秀美 丁利杰 高新波 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第1期94-98,共5页
在图像检索技术中,针对高维特性海量的图像数据检索速度慢、数据存储容量大及图像和其哈希编码之间相关性差的缺点,将相关性预测函数引入到哈希算法中,提出了一种相似性保持的线性嵌入哈希方法.该方法利用相关性预测函数保持高维数据与... 在图像检索技术中,针对高维特性海量的图像数据检索速度慢、数据存储容量大及图像和其哈希编码之间相关性差的缺点,将相关性预测函数引入到哈希算法中,提出了一种相似性保持的线性嵌入哈希方法.该方法利用相关性预测函数保持高维数据与其编码之间的邻近关系,使边界损失代价最小化,构建线性哈希映射矩阵,获得紧致的哈希编码,提高了图像与编码间的相关性,实现了高精度的图像检索.通过与现存经典的哈希算法相对比,实验结果验证了线性嵌入哈希方法在查全率和查准率上的有效性. 展开更多
关键词 相似最近邻搜索 哈希 相关性预测函数 查准率 查全率
下载PDF
A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix
3
作者 李文法 Wang Gongming +1 位作者 Ma Nan Liu Hongzhe 《High Technology Letters》 EI CAS 2016年第3期241-247,共7页
Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculat... Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing. 展开更多
关键词 nearest neighbor search high-dimensional data SIMILARITY indexing tree NPsim KD-TREE SR-tree Munsell
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部