以内蒙古中部某风电场为实验风电场,采用随机森林(Random forest,RF)方法、相似误差订正(Analogue correction of errors,ACE)方法以及概率密度匹配方法(Probability density function matching method,PDF)分别对风电场风速预报进行订...以内蒙古中部某风电场为实验风电场,采用随机森林(Random forest,RF)方法、相似误差订正(Analogue correction of errors,ACE)方法以及概率密度匹配方法(Probability density function matching method,PDF)分别对风电场风速预报进行订正及适用性研究。结果表明:3种方法在各季均对中尺度天气预报模式(Weather research and forecasting model,WRF)风速预报具有不同程度的订正效果,RF方法可以有效改善WRF误差较大的问题,但兼具误差过分放大情况,ACE方法和PDF虽然对较大误差的改善能力不及RF方法,但是能够较好地控制误差过分放大问题。此外,3种方法针对小于5 m·s^(-1)的小风速段,订正效果不理想,随着风速的增加,订正能力逐渐增强。参照预报模型各自的优势,尝试开展多种预报模型的分风速等级集成应用,可以对不同风速等级下的WRF预报起到较好的改善作用。展开更多
文摘以内蒙古中部某风电场为实验风电场,采用随机森林(Random forest,RF)方法、相似误差订正(Analogue correction of errors,ACE)方法以及概率密度匹配方法(Probability density function matching method,PDF)分别对风电场风速预报进行订正及适用性研究。结果表明:3种方法在各季均对中尺度天气预报模式(Weather research and forecasting model,WRF)风速预报具有不同程度的订正效果,RF方法可以有效改善WRF误差较大的问题,但兼具误差过分放大情况,ACE方法和PDF虽然对较大误差的改善能力不及RF方法,但是能够较好地控制误差过分放大问题。此外,3种方法针对小于5 m·s^(-1)的小风速段,订正效果不理想,随着风速的增加,订正能力逐渐增强。参照预报模型各自的优势,尝试开展多种预报模型的分风速等级集成应用,可以对不同风速等级下的WRF预报起到较好的改善作用。