A tunable microwave photonic bandpass filter with high mainlobe-to-sidelobe ratio (MSR) based on a phase modulator and a dispersive device is proposed. The multi-tap characteristics of the filter are realized by slici...A tunable microwave photonic bandpass filter with high mainlobe-to-sidelobe ratio (MSR) based on a phase modulator and a dispersive device is proposed. The multi-tap characteristics of the filter are realized by slicing a broadband source using a Mach-Zehnder interferometer (MZI) which results in a high MSR of 25 dB. The tunability of the filter is realized by an optical variable delay line (OVDL) in one arm of the MZI, which changes the wavelength spacing of the sliced broadband source and results in a tunable free spectrum range (FSR) of the filter. The central frequency of the bandpass filter is tunable from 10.7 GHz to 27 GHz by changing the wavelength spacing from 0.145 nm to 0.054 nm.展开更多
A dual-band bandpass microwave photonic filter(MPF) based on stimulated Brillouin scattering(SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources(TLSs) are employed to ge...A dual-band bandpass microwave photonic filter(MPF) based on stimulated Brillouin scattering(SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources(TLSs) are employed to generate two passbands by implementing phase modulation to amplitude modulation conversion by using SBS induced sideband amplification. The center frequencies of both passbands can be independently tuned ranging from 1 GHz to 19 GHz. High resolution with 3 d B bandwidth less than 30 MHz and large out-of-band rejection about 40 d B under 25 m W optical pump power are achieved.展开更多
基金supported by the National Natural Science Foundation of China (No.60808004)the New Century Excellent Talents in University (No.NCET-07-0611)the Tianjin Natural Science Foundation (No.08JCYBJC14500)
文摘A tunable microwave photonic bandpass filter with high mainlobe-to-sidelobe ratio (MSR) based on a phase modulator and a dispersive device is proposed. The multi-tap characteristics of the filter are realized by slicing a broadband source using a Mach-Zehnder interferometer (MZI) which results in a high MSR of 25 dB. The tunability of the filter is realized by an optical variable delay line (OVDL) in one arm of the MZI, which changes the wavelength spacing of the sliced broadband source and results in a tunable free spectrum range (FSR) of the filter. The central frequency of the bandpass filter is tunable from 10.7 GHz to 27 GHz by changing the wavelength spacing from 0.145 nm to 0.054 nm.
基金supported by the Science and Technology Development Plan of Jilin Province(Nos.20150204003GX and 20160519010JH)the Science and Technology Plan of Changchun(No.14KG019)
文摘A dual-band bandpass microwave photonic filter(MPF) based on stimulated Brillouin scattering(SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources(TLSs) are employed to generate two passbands by implementing phase modulation to amplitude modulation conversion by using SBS induced sideband amplification. The center frequencies of both passbands can be independently tuned ranging from 1 GHz to 19 GHz. High resolution with 3 d B bandwidth less than 30 MHz and large out-of-band rejection about 40 d B under 25 m W optical pump power are achieved.