It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations...It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.展开更多
We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded...We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.展开更多
We propose an approach to detect an unknown quantum state of the atom(s) by measuring the phase shifts of the transmitted photons through a dispersively-coupled cavity. In the framework of the input-output theory, we ...We propose an approach to detect an unknown quantum state of the atom(s) by measuring the phase shifts of the transmitted photons through a dispersively-coupled cavity. In the framework of the input-output theory, we derive the relations between the phase shifts of the transmitted photons and the states of the atom(s) in the cavity. It is shown that due to the dispersive interaction between the cavity and the atom(s), information about the atomic state can then be extracted by measuring the phase shifts of the transmitted photons through the cavity. The feasibility of the proposal is also discussed with the experimental parameters by numerical method.展开更多
We demonstrate the generation of supercontinuum(SC) spectrum covering S+C+L band of optical communication by injecting 1.4 ps optical pulses with center wavelength of 1552 nm and repetition rate of 10 GHz into an all-...We demonstrate the generation of supercontinuum(SC) spectrum covering S+C+L band of optical communication by injecting 1.4 ps optical pulses with center wavelength of 1552 nm and repetition rate of 10 GHz into an all-normal dispersion photonic crystal fiber(PCF) with length of 80 m. The experimental results are in good agreement with the numerical simulations, which are used to illustrate the SC generation dynamics by self-phase modulation and optical wave breaking(WB).展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 40774099, 10874202 and 11134011)National 863 Program of China (Grant No. 2008AA06Z205)
文摘It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.
文摘We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.
基金Supported by the Special Funds of the National Natural Science Foundation of China under Grant Nos.11247032 and 11247207the National Fundamental Research Program of China under Grant No.2010CB923104
文摘We propose an approach to detect an unknown quantum state of the atom(s) by measuring the phase shifts of the transmitted photons through a dispersively-coupled cavity. In the framework of the input-output theory, we derive the relations between the phase shifts of the transmitted photons and the states of the atom(s) in the cavity. It is shown that due to the dispersive interaction between the cavity and the atom(s), information about the atomic state can then be extracted by measuring the phase shifts of the transmitted photons through the cavity. The feasibility of the proposal is also discussed with the experimental parameters by numerical method.
基金supported by the Guangdong Science and Technology Program(No.2012B090600009)the Guangdong Natural Science Fund(No.10451170003004948)
文摘We demonstrate the generation of supercontinuum(SC) spectrum covering S+C+L band of optical communication by injecting 1.4 ps optical pulses with center wavelength of 1552 nm and repetition rate of 10 GHz into an all-normal dispersion photonic crystal fiber(PCF) with length of 80 m. The experimental results are in good agreement with the numerical simulations, which are used to illustrate the SC generation dynamics by self-phase modulation and optical wave breaking(WB).