A new FM transmitter is reported. It adopts a fractional-N PLL synthesizer to realize the FM modulator. An extra offset current has also been applied to eliminate the effects of the mismatch in CP. The chip is fabrica...A new FM transmitter is reported. It adopts a fractional-N PLL synthesizer to realize the FM modulator. An extra offset current has also been applied to eliminate the effects of the mismatch in CP. The chip is fabricated with CSMC 0.5μm DPTM CMOS technology. Experiments show that it achieves THD≤0.08% and SNR≤ 82dB,and the maximum outband emission energy ≤ 90dBc/Hz. Furthermore,it also uses an auto frequency adjusting method to avoid tuning up the external inductances. All these merits are very suitable for FM transmission.展开更多
By jitter performance comparison between PLL (Phase Locked Loop) and DLL (Delay Locked Loop),a helpful equation is derived for the structure choice between DLL and PLL based synthesizers fabricated in CMOS processes ...By jitter performance comparison between PLL (Phase Locked Loop) and DLL (Delay Locked Loop),a helpful equation is derived for the structure choice between DLL and PLL based synthesizers fabricated in CMOS processes to get an optimum jitter performance and power consumption.For a frequency synthesizer,a large multiple factor prefers PLL based configuration which consumes less power,while a small one needs DLL based topology which produces a better jitter performance.展开更多
This paper presents a wide tuning range CMOS frequency synthesizer for a dual-band GPS receiver,which has been fabricated in a standard 0.18μm RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows ...This paper presents a wide tuning range CMOS frequency synthesizer for a dual-band GPS receiver,which has been fabricated in a standard 0.18μm RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45 and 3.14GHz in case of process corner or temperature variation,with a current consumption varying accordingly from 0.8 to 0.4mA,from a 1.8V supply voltage. Measurement results show that the whole frequency synthesizer consumes very low power of 5.6mW working at L1 band with in-band phase noise less than - 82dBc/Hz and out-of-band phase noise about - ll2dBc/Hz at 1MHz offset from a 3. 142GHz carrier. The performance of the frequency synthesizer meets the requirements of GPS applications very well.展开更多
文摘A new FM transmitter is reported. It adopts a fractional-N PLL synthesizer to realize the FM modulator. An extra offset current has also been applied to eliminate the effects of the mismatch in CP. The chip is fabricated with CSMC 0.5μm DPTM CMOS technology. Experiments show that it achieves THD≤0.08% and SNR≤ 82dB,and the maximum outband emission energy ≤ 90dBc/Hz. Furthermore,it also uses an auto frequency adjusting method to avoid tuning up the external inductances. All these merits are very suitable for FM transmission.
文摘By jitter performance comparison between PLL (Phase Locked Loop) and DLL (Delay Locked Loop),a helpful equation is derived for the structure choice between DLL and PLL based synthesizers fabricated in CMOS processes to get an optimum jitter performance and power consumption.For a frequency synthesizer,a large multiple factor prefers PLL based configuration which consumes less power,while a small one needs DLL based topology which produces a better jitter performance.
文摘This paper presents a wide tuning range CMOS frequency synthesizer for a dual-band GPS receiver,which has been fabricated in a standard 0.18μm RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45 and 3.14GHz in case of process corner or temperature variation,with a current consumption varying accordingly from 0.8 to 0.4mA,from a 1.8V supply voltage. Measurement results show that the whole frequency synthesizer consumes very low power of 5.6mW working at L1 band with in-band phase noise less than - 82dBc/Hz and out-of-band phase noise about - ll2dBc/Hz at 1MHz offset from a 3. 142GHz carrier. The performance of the frequency synthesizer meets the requirements of GPS applications very well.