期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于关联规则的个性化推荐系统 被引量:25
1
作者 丁振国 陈静 《计算机集成制造系统-CIMS》 EI CSCD 北大核心 2003年第10期891-893,共3页
以数据挖掘中的关联规则理论为基础,从应用的角度出发,设计了一套相关产品推荐系统ARecom,实现了电子购物中的个性化服务。针对直接决定整体算法效率的频繁大项集生成步骤,应用大量的数据,研究比较了三种典型算法,并在此基础上,提出了... 以数据挖掘中的关联规则理论为基础,从应用的角度出发,设计了一套相关产品推荐系统ARecom,实现了电子购物中的个性化服务。针对直接决定整体算法效率的频繁大项集生成步骤,应用大量的数据,研究比较了三种典型算法,并在此基础上,提出了适合电子商务相关推荐系统的完整的算法模型。 展开更多
关键词 关联规则 个性化 相关产品推荐
下载PDF
Multi-Domain Collaborative Recommendation with Feature Selection 被引量:3
2
作者 Lizhen Liu Junjun Cui +1 位作者 Wei Song Hanshi Wang 《China Communications》 SCIE CSCD 2017年第8期137-148,共12页
Collaborative f iltering, as one of the most popular techniques, plays an important role in recommendation systems. However,when the user-item rating matrix is sparse,its performance will be degenerate. Recently,domai... Collaborative f iltering, as one of the most popular techniques, plays an important role in recommendation systems. However,when the user-item rating matrix is sparse,its performance will be degenerate. Recently,domain-specific recommendation approaches have been developed to address this problem.The basic idea is to partition the users and items into overlapping domains, and then perform recommendation in each domain independently. Here, a domain means a group of users having similar preference to a group of products. However, these domain-specific methods consisting of two sequential steps ignore the mutual benefi t of domain segmentation and recommendation. Hence, a unified framework is presented to simultaneously realize recommendation and make use of the domain information underlying the rating matrix in this paper. Based on matrix factorization,the proposed model learns both user preferences of multiple domains and preference selection vectors to select relevant features for each group of products. Besides, local context information is utilized from the user-item rating matrix to enhance the new framework.Experimental results on two widely used datasets, e.g., Ciao and Epinions, demonstrate the effectiveness of our proposed model. 展开更多
关键词 collaborative recommendation multi-domain matrix factorization feature selection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部