This paper presents a conceptual framework of integrated waste management which focuses on all stages of product life cycle. A mechanism of resource recovery motivating from waste in economic system (designers, produ...This paper presents a conceptual framework of integrated waste management which focuses on all stages of product life cycle. A mechanism of resource recovery motivating from waste in economic system (designers, producers, consumers, stakeholders in the field of disposal of the product) is suggested. The classification of institutional and economic instruments in the field of waste management as recoverable resources is developed. The author has proposed a scientific and methodical approach to the formation of an integrated waste management as recoverable resources, which is based on a set of methods of economic incentives at all stages of product life cycle and ensures the maximum possible and the environmentally safe management of wastes containing valuable resource components.展开更多
A frequency and amplitude dependent model is used to describe the complex behavior of rail pads. It is implemented into the dynamic analysis of three dimensional coupled vehicle-slab track (3D-CVST) systems. The veh...A frequency and amplitude dependent model is used to describe the complex behavior of rail pads. It is implemented into the dynamic analysis of three dimensional coupled vehicle-slab track (3D-CVST) systems. The vehicle is treated as a 35-degree- of-freedom multi-body system, and the slab track is represented by two continuous Bernoulli-Euler beams supported by a se- ries of elastic rectangle plates on a viscoelastic foundation. The rail pad model takes into account the influences of the excita- tion frequency and of the displacement amplitude through a fractional derivative element, and a nonlinear friction element, re- spectively. The Granwald representation of the fractional derivatives is employed to numerically solve the fractional and non- linear equations of motion of the 3D-CVST system by means of an explicit integration algorithm. A dynamic analysis of the 3D-CVST system exposed to excitations of rail harmonic irregularities is primarily carried out, which reveals the dependence of stiffness and damping on excitation frequency and displacement amplitude. Subsequently, sensitive analyses of the model parameters are investigated by conducting the dynamic analysis of the 3D-CVST system subjected to excitations of welded rail joint irregularities. Following this, parameters of the rail pad model are optimized with respect to experimental values. For elu- cidation, the 3D-CVST dynamic model incorporated with the rail pads model is used to calculate the wheel/rail forces induced by excitations of measured random track irregularities. Further, the numerical results are compared with experimental data, demonstrating the reliability of the proposed model.展开更多
We report a phenomenon of asymmetric evolution of two two-level atoms which results from pump laser phase based on the model of[Phys.Rev.Lett.101(2008) 153601].Other than investigating the dynamical behavior of whole ...We report a phenomenon of asymmetric evolution of two two-level atoms which results from pump laser phase based on the model of[Phys.Rev.Lett.101(2008) 153601].Other than investigating the dynamical behavior of whole system,in this paper we investigate the effects of the pump laser phase on dynamic behavior of each atom.We find that two atoms show asymmetry both in time evolution of(population) excitation probability and quantum correlation with environment due to the quantum interference induced by pump laser phase as well as the dipole-dipole interaction.These phenomena are deeply related to the dynamical behavior of the whole system,therefore we can understand the dynamical behavior of whole system caused by pump laser phase from this point of view.展开更多
文摘This paper presents a conceptual framework of integrated waste management which focuses on all stages of product life cycle. A mechanism of resource recovery motivating from waste in economic system (designers, producers, consumers, stakeholders in the field of disposal of the product) is suggested. The classification of institutional and economic instruments in the field of waste management as recoverable resources is developed. The author has proposed a scientific and methodical approach to the formation of an integrated waste management as recoverable resources, which is based on a set of methods of economic incentives at all stages of product life cycle and ensures the maximum possible and the environmentally safe management of wastes containing valuable resource components.
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2013CB036202 and 2013CB036206)the Science and Technology Development Program of China Railway Corporation(Grant No.2014G002-B)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2682013CX029)the 2013 Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University
文摘A frequency and amplitude dependent model is used to describe the complex behavior of rail pads. It is implemented into the dynamic analysis of three dimensional coupled vehicle-slab track (3D-CVST) systems. The vehicle is treated as a 35-degree- of-freedom multi-body system, and the slab track is represented by two continuous Bernoulli-Euler beams supported by a se- ries of elastic rectangle plates on a viscoelastic foundation. The rail pad model takes into account the influences of the excita- tion frequency and of the displacement amplitude through a fractional derivative element, and a nonlinear friction element, re- spectively. The Granwald representation of the fractional derivatives is employed to numerically solve the fractional and non- linear equations of motion of the 3D-CVST system by means of an explicit integration algorithm. A dynamic analysis of the 3D-CVST system exposed to excitations of rail harmonic irregularities is primarily carried out, which reveals the dependence of stiffness and damping on excitation frequency and displacement amplitude. Subsequently, sensitive analyses of the model parameters are investigated by conducting the dynamic analysis of the 3D-CVST system subjected to excitations of welded rail joint irregularities. Following this, parameters of the rail pad model are optimized with respect to experimental values. For elu- cidation, the 3D-CVST dynamic model incorporated with the rail pads model is used to calculate the wheel/rail forces induced by excitations of measured random track irregularities. Further, the numerical results are compared with experimental data, demonstrating the reliability of the proposed model.
基金Supported by the National Natural Science Foundation of China under Grant No.11174109
文摘We report a phenomenon of asymmetric evolution of two two-level atoms which results from pump laser phase based on the model of[Phys.Rev.Lett.101(2008) 153601].Other than investigating the dynamical behavior of whole system,in this paper we investigate the effects of the pump laser phase on dynamic behavior of each atom.We find that two atoms show asymmetry both in time evolution of(population) excitation probability and quantum correlation with environment due to the quantum interference induced by pump laser phase as well as the dipole-dipole interaction.These phenomena are deeply related to the dynamical behavior of the whole system,therefore we can understand the dynamical behavior of whole system caused by pump laser phase from this point of view.