期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
彩色融合图像的质量主观评价 被引量:14
1
作者 金伟其 贾晓婷 +3 位作者 高绍姝 马国利 潘定平 刘佳妮 《光学精密工程》 EI CAS CSCD 北大核心 2015年第12期3465-3471,共7页
考虑人眼主观评价在彩色融合图像质量评价中的重要作用,设计了52人的彩色融合图像质量主观评价实验。采用"目标背景的感知对比度","清晰度","颜色协调性","颜色自然感"4个单一评价指标以及&qu... 考虑人眼主观评价在彩色融合图像质量评价中的重要作用,设计了52人的彩色融合图像质量主观评价实验。采用"目标背景的感知对比度","清晰度","颜色协调性","颜色自然感"4个单一评价指标以及"基于目标探测的图像感知质量","基于场景理解的图像感知质量"2个综合评价指标对绿地、海天和城镇3类典型场景、8种融合算法获得的240幅彩色融合图像进行了主观评价,并依此进行指标分值归整及相关性分析,建立了2个综合指标的预测模型。实验结果表明:彩色融合图像的"颜色协调性"和"颜色自然感"有较高的相关性;基于目标探测的图像感知质量可用"目标背景的感知对比度"和"清晰度"来描述,基于场景理解的图像感知质量可用"颜色协调性"和"清晰度"来描述。但是对于不同的场景,每个指标的影响效果不同,所以预测模型中的权重系数不同。 展开更多
关键词 彩色融合图像 主观评价 主观评价指标 综合指标预测模型 分值归整及相关性分析
下载PDF
Analysis of phenotypic and genetic parameters for growth-related traits in the half smooth tongue sole,Cynoglossus semilaevis 被引量:2
2
作者 刘峰 李仰真 +2 位作者 杜民 邵长伟 陈松林 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第1期163-169,共7页
Phenotypic and genetic parameters for growth-related traits in the half-smooth tongue sole, Cynoglossus semilaevis, were estimated in 22 full-sib families produced by normal and neo-male breeding stocks. As phenotypic... Phenotypic and genetic parameters for growth-related traits in the half-smooth tongue sole, Cynoglossus semilaevis, were estimated in 22 full-sib families produced by normal and neo-male breeding stocks. As phenotypic males with female genotypes, neo-males are harmful in C. semilaevis aquaculture because they reduce overall production. The present study evaluated the difference in the growth-related traits: total length (TL), body weight (BW) and square root of body weight (SQ_BW) at the age of 570 days between normal and neo-male offspring (neo-males used as male parents). The difference in the proportion of females between normal and neo-male offspring was also assessed. Based on the linear mixed model, restricted maximum likelihood (REML) and best linear unbiased prediction (BLUP) were used to estimate various (co)variance components and estimated breeding values (EBVs) of growth-related traits. As a result, all the mean values of the three studied traits were significantly larger in normal offspring than in neo-male offspring. Additionally, the female proportion was significantly larger in normal offspring than in neo-male offspring. Heritability was 0.128+0.066 2 for TL, 0.128-4-0.065 5 for BW and 0.132~0.062 9 for SQBW, all of which were low level heritabilities. The correlation coefficients of EBVs and phenotypic values of the target traits were 0.516 for TL, 0.524 for BW and 0.506 for SQ_BW, all of which were highly significant (P〈0.01). Genetic correlations among TL, BW and SQ_BW were positive high (0.921-0.969) and higher than those of phenotype (0.711-0.748), both of which had low standard errors (0.063-0.123 for genotype, and 0.010-0.018 for phenotype). Compared with normal offspring, neo-male offspring have lower breeding values for each studied trait through EBVs comparison. Therefore, neo-male offspring should not be used as broodstock in a C. semilaevis breeding programs. 展开更多
关键词 Cynoglossus semilaevis estimated breeding value (EBV) HERITABILITY genetic correlation
下载PDF
全球尺度多源土地覆被数据融合与评价研究 被引量:12
3
作者 白燕 冯敏 《地理学报》 EI CSSCI CSCD 北大核心 2018年第11期2223-2235,共13页
精确的全球及区域尺度土地覆被遥感分类数据是全球变化、陆地表层过程模拟、生态文明建设及区域可持续发展等研究的重要基础数据。本文以5套全球土地覆被数据集GLCC、UMD、GLC2000、MODIS LC、GlobCover为研究对象,结合MODIS VCF、MODIS... 精确的全球及区域尺度土地覆被遥感分类数据是全球变化、陆地表层过程模拟、生态文明建设及区域可持续发展等研究的重要基础数据。本文以5套全球土地覆被数据集GLCC、UMD、GLC2000、MODIS LC、GlobCover为研究对象,结合MODIS VCF、MODIS Cropland Probability以及AVHRR CFTC数据集,设计一种基于模糊逻辑思想的证据融合方法实现上述多源土地覆被信息的决策融合,生成一套依据植物功能型分类的全球1 km土地覆被融合数据SYNLCover。结果显示,与5套源土地覆被数据集相比:(1)在总体一致性精度上,SYNLCover的8个生物形态类型和12个目标类型的平均总体一致性精度最高,分别约为65.6%和59.4%,其次依次是MODIS LC、GLC2000、GLCC和GlobCover,UMD的最低,分别约为48.9%和42.6%,而且SYNLCover与5套源土地覆被数据集两两相比的总体一致性都是最好的;(2)在类型一致性精度上,除灌丛类型外,SYNLCover中包括森林、草地、耕地、湿地、水体、城镇建筑和其他7种生物形态类型,以及森林类型的5种叶属性的平均一致性精度也是最高的,如其他类型的平均一致性精度可达67.73%;(3)除灌丛和湿地类型外,SYNLCover的其余6种生物形态类型的平均一致性精度均比其在5套源数据中相应的一致性精度的最大值提高了10%~15%左右;森林类型的5种叶属性的一致性精度也提高了约10%。SYNLCover分类精度的提高反映了本研究设计的多源数据融合方法的可行性和有效性。 展开更多
关键词 土地覆被 模糊逻辑 相关性分值 数据融合 一致性精度评价 多源信息
原文传递
Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes 被引量:3
4
作者 Mohsen BAGHERI BODAGHABADI José Antonio MARTINEZ-CASASNOVAS +4 位作者 Mohammad Hasan SALEHI Jahangard MOHAMMADI Isa ESFANDIARPOOR BORUJENI Norair TOOMANIAN Amir GANDOMKAR 《Pedosphere》 SCIE CAS CSCD 2015年第4期580-591,共12页
Detailed soil surveys involve costly and time-consuming work and require expert knowledge. Since soil surveys provide information to meet a wide range of needs, new methods are necessary to map soils quickly and accur... Detailed soil surveys involve costly and time-consuming work and require expert knowledge. Since soil surveys provide information to meet a wide range of needs, new methods are necessary to map soils quickly and accurately. In this study, multilayer perceptron artificial neural networks(ANNs) were developed to map soil units using digital elevation model(DEM) attributes. Several optimal ANNs were produced based on a number of input data and hidden units. The approach used test and validation areas to calculate the accuracy of interpolated and extrapolated data. The results showed that the system and level of soil classification employed had a direct effect on the accuracy of the results. At the lowest level, smaller errors were observed with the World Reference Base(WRB)classification criteria than the Soil Taxonomy(ST) system, but more soil classes could be predicted when using ST(7 soils in the case of ST vs. 5 with WRB). Training errors were below 11% for all the ANN models applied, while the test error(interpolation error) and validation error(extrapolation error) were as high as 50% and 70%, respectively. As expected, soil prediction using a higher level of classification presented a better overall level of accuracy. To obtain better predictions, in addition to DEM attributes, data related to landforms and/or lithology as soil-forming factors, should be used as ANN input data. 展开更多
关键词 digital elevation model attributes multilayer perceptron soil classification soil-forming factors soil survey
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部