To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function ...To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].展开更多
Applying a fully nonlinear numerical scheme with second-order temporal and spatial precision,nonlinear interactions of gravity waves are simulated and the matching relationships of the wavelengths and frequencies of t...Applying a fully nonlinear numerical scheme with second-order temporal and spatial precision,nonlinear interactions of gravity waves are simulated and the matching relationships of the wavelengths and frequencies of the interacting waves are discussed.In resonant interactions,the wavelengths of the excited wave are in good agreement with the values derived from sum or difference resonant conditions,and the frequencies of the three waves also satisfy the matching condition.Since the interacting waves obey the resonant conditions,resonant interactions have a reversible feature that for a resonant wave triad,any two waves are selected to be the initial perturbations,and the third wave can then be excited through sum or difference resonant interaction.The numerical results for nonresonant triads show that in nonresonant interactions,the wave vectors tend to approximately match in a single direction,generally in the horizontal direction.The frequency of the excited wave is close to the matching value,and the degree of mismatching of frequencies may depend on the combined effect of both the wavenumber and frequency mismatches that should benefit energy exchange to the greatest extent.The matching and mismatching relationships in nonresonant interactions differ from the results of weak interaction theory that the wave vectors are required to satisfy the resonant matching condition but the frequencies are permitted to mismatch and oscillate with amplitude of half the mismatching frequency.Nonresonant excitation has an irreversible characteristic,which is different from what is found for the resonant interaction.For specified initial primary and secondary waves,it is difficult to predict the values of the mismatching wavenumber and frequency for the excited wave owing to the complexity.展开更多
基金Project(61273095)supported by the National Natural Science Foundation of ChinaProject(135225)supported by the Academy of Finland
文摘To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].
基金supported by National Natural Science Foundation of China (Grant Nos. 41074110,41174133 and 40825013)National Basic Research Program of China (Grant No. 2012CB825605)+2 种基金Ocean Public Welfare Scientific Research Project,State Oceanic Administration People’s Republic of China (Grant No. 201005017)China Meteorological Administration (Grant No. GYHY201106011)Fundamental Research Funds for the Central Universities
文摘Applying a fully nonlinear numerical scheme with second-order temporal and spatial precision,nonlinear interactions of gravity waves are simulated and the matching relationships of the wavelengths and frequencies of the interacting waves are discussed.In resonant interactions,the wavelengths of the excited wave are in good agreement with the values derived from sum or difference resonant conditions,and the frequencies of the three waves also satisfy the matching condition.Since the interacting waves obey the resonant conditions,resonant interactions have a reversible feature that for a resonant wave triad,any two waves are selected to be the initial perturbations,and the third wave can then be excited through sum or difference resonant interaction.The numerical results for nonresonant triads show that in nonresonant interactions,the wave vectors tend to approximately match in a single direction,generally in the horizontal direction.The frequency of the excited wave is close to the matching value,and the degree of mismatching of frequencies may depend on the combined effect of both the wavenumber and frequency mismatches that should benefit energy exchange to the greatest extent.The matching and mismatching relationships in nonresonant interactions differ from the results of weak interaction theory that the wave vectors are required to satisfy the resonant matching condition but the frequencies are permitted to mismatch and oscillate with amplitude of half the mismatching frequency.Nonresonant excitation has an irreversible characteristic,which is different from what is found for the resonant interaction.For specified initial primary and secondary waves,it is difficult to predict the values of the mismatching wavenumber and frequency for the excited wave owing to the complexity.