Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability ...Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.展开更多
Distributed consensus problems for multiple Euler-Lagrange systems are addressed on the basis of event-triggered information in this study. Distributed consensus protocols are first designed in terms of two event-trig...Distributed consensus problems for multiple Euler-Lagrange systems are addressed on the basis of event-triggered information in this study. Distributed consensus protocols are first designed in terms of two event-triggered scenarios: a decentralized strategy and a distributed strategy. Sufficient conditions that guarantee the event-triggered consensus for multiple Euler-Lagrange systems are then presented, with the associated advantages of reducing controller update times. It is shown that the Zeno behavior of triggering time sequences is excluded for both strategies. Finally, multiple Euler-Lagrange systems that consist of six two-link manipulators are considered to illustrate the effectiveness of the proposed theoretical algorithms.展开更多
基金National Natural Science Foundation of China(No.61741508)
文摘Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.61225013&11332001)
文摘Distributed consensus problems for multiple Euler-Lagrange systems are addressed on the basis of event-triggered information in this study. Distributed consensus protocols are first designed in terms of two event-triggered scenarios: a decentralized strategy and a distributed strategy. Sufficient conditions that guarantee the event-triggered consensus for multiple Euler-Lagrange systems are then presented, with the associated advantages of reducing controller update times. It is shown that the Zeno behavior of triggering time sequences is excluded for both strategies. Finally, multiple Euler-Lagrange systems that consist of six two-link manipulators are considered to illustrate the effectiveness of the proposed theoretical algorithms.