期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于相关支持矩阵机的滚动轴承故障诊断方法研究 被引量:2
1
作者 陈英 陈木荣 《机电工程》 CAS 北大核心 2021年第12期1592-1598,共7页
由于在采用支持矩阵机(SMM)进行分类建模时,缺乏必要的概率信息,导致其产生的稀疏性和鲁棒性不明确,为此,以贝叶斯理论框架为基础,提出了一种相关支持矩阵机(RSMM),并将其运用到滚动轴承的故障诊断中。首先,在RSMM中以矩阵为建模元素,... 由于在采用支持矩阵机(SMM)进行分类建模时,缺乏必要的概率信息,导致其产生的稀疏性和鲁棒性不明确,为此,以贝叶斯理论框架为基础,提出了一种相关支持矩阵机(RSMM),并将其运用到滚动轴承的故障诊断中。首先,在RSMM中以矩阵为建模元素,建立了多分类目标函数,并利用输入矩阵行与列之间的结构化信息,建立了精确的预测模型;然后,利用贝叶斯学习框架,为模型参数施加了一个条件概率分布的约束,得到了稀疏的解空间(由于RSMM的核函数不受Mercer的条件限制,可以获得各类别之间的概率统计信息);将先验概率引入到模型权重设置中,使RSMM模型具有了稀疏性,进而对不确定样本进行了分类;最后,进行了滚动轴承故障分类实验,采用滚动轴承数据集对该方法的性能进行了检验。研究结果表明:利用贝叶斯学习框架和先验概率,采用RSMM可以对不确定样本进行准确分类,同时也可充分利用样本的结构化信息;相比于SMM及其改进算法,RSMM的整体识别率提高2%~8%,证明RSMM在滚动轴承故障诊断中具有优越的分类性能。 展开更多
关键词 滚动轴承 故障诊断 相关支持矩阵机 贝叶斯框架
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部