期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于n-gram短语的文本聚类方法研究
1
作者
孙桂煌
《现代计算机》
2011年第14期9-11,16,共4页
由于文本自身特点使得传统的文档表示模型VSM不能很好地反映文本信息.也让传统数据挖掘聚类算法得不到很好的性能表现。针对传统文本聚类方法中文本表示模型VSM和聚类算法的不足,提出一种基于n—gram短语的文本聚类方法,该方法利用n-...
由于文本自身特点使得传统的文档表示模型VSM不能很好地反映文本信息.也让传统数据挖掘聚类算法得不到很好的性能表现。针对传统文本聚类方法中文本表示模型VSM和聚类算法的不足,提出一种基于n—gram短语的文本聚类方法,该方法利用n-gram短语构建短语文档相关模型,将其转换成相关文档模型,在相关文档模型基础上进行文档聚类。实验结果显示,此方法是一种能获得较好聚类结果的有效方法。
展开更多
关键词
文本聚类
n-gram短语
向量空间
模型
相关文档模型
下载PDF
职称材料
题名
一种基于n-gram短语的文本聚类方法研究
1
作者
孙桂煌
机构
福州海峡职业技术学院
福建工程学院国脉信息院
出处
《现代计算机》
2011年第14期9-11,16,共4页
文摘
由于文本自身特点使得传统的文档表示模型VSM不能很好地反映文本信息.也让传统数据挖掘聚类算法得不到很好的性能表现。针对传统文本聚类方法中文本表示模型VSM和聚类算法的不足,提出一种基于n—gram短语的文本聚类方法,该方法利用n-gram短语构建短语文档相关模型,将其转换成相关文档模型,在相关文档模型基础上进行文档聚类。实验结果显示,此方法是一种能获得较好聚类结果的有效方法。
关键词
文本聚类
n-gram短语
向量空间
模型
相关文档模型
Keywords
Text Clustering
n-gram Phrase
VSM
Related Text Model
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于n-gram短语的文本聚类方法研究
孙桂煌
《现代计算机》
2011
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部