期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
应用相关近邻局部线性嵌入算法的高光谱遥感影像分类 被引量:13
1
作者 刘嘉敏 罗甫林 +1 位作者 黄鸿 刘亦哲 《光学精密工程》 EI CAS CSCD 北大核心 2014年第6期1668-1676,共9页
传统的局部线性嵌入(LLE)算法需用欧氏距离度量近邻,但欧氏距离只表示两点间的直线距离,在高维空间中不一定能反映数据间的真实空间分布,导致近邻选取不稳定.针对此问题,本文提出了相关近邻(CN)LIE(CN-LLE)和相关最近邻分类(CNN... 传统的局部线性嵌入(LLE)算法需用欧氏距离度量近邻,但欧氏距离只表示两点间的直线距离,在高维空间中不一定能反映数据间的真实空间分布,导致近邻选取不稳定.针对此问题,本文提出了相关近邻(CN)LIE(CN-LLE)和相关最近邻分类(CNN)算法.提出的算法首先利用相关系数度量数据间的近邻,实现更准确的局部重构,提取鉴别特征;然后用CNN对低维嵌入特征进行分类.在KSC和Indian Pine高光谱遥感数据集上的地物分类实验结果表明:本文提出的CN-LLE+ CNN算法比LLE、LLE+CNN和CN-LLE等算法的总分类精度提升了2.11%~11.55%,Kappa系数提升了0.026~0.143.由于该算法增加了近邻为同类的概率,便于更有效地提取同类数据的鉴别特征,且有更好的稳定性,故能更有效地实现高光谱遥感数据的地物分类. 展开更多
关键词 高光谱影像分类 流形学习 局部线性嵌入 相关 相关最近邻分类器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部