The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstruc...The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase.展开更多
Based on the analyses of the microstructures and phase diagrams of the TiAl-based alloy, the relationship among the composition, structure and mechanical properties of the B2-containing y-TiAI alloys was reviewed. The...Based on the analyses of the microstructures and phase diagrams of the TiAl-based alloy, the relationship among the composition, structure and mechanical properties of the B2-containing y-TiAI alloys was reviewed. The refinement of microstructures and improvement of mechanical properties of TiA1 alloy through stabilization of the β/B2 phase were reviewed. The mechanism of the superplastic behavior of the B2-containing y-TiAI alloys was discussed. With a reasonable addition of β-stabilizer, metastable B2 phase can be maintained, which is favorable for fine-grained structure and better high-temperature deformation behaviors. The mechanical properties of the B2-containing TiAI alloy, including the deformability and elevated temperature properties, can also be improved with doping elements and subsequent hot-working processes. The above mentioned researches discuss a new way for developing TiAI alloys with comprehensive properties, including good deformability and creep resistance.展开更多
The microstructure and mechanical properties of extruded Mg-Zn alloy containing Y element were investigated in temperature range of 300-450°C and strain rate range of 0.001-1 s-1 through hot compression tests.Pro...The microstructure and mechanical properties of extruded Mg-Zn alloy containing Y element were investigated in temperature range of 300-450°C and strain rate range of 0.001-1 s-1 through hot compression tests.Processing maps were used to indicate optimum conditions and instability zones for hot deformation of alloys.For Mg-Zn and Mg-Zn-Y alloys,peak stress,temperature and strain rate were related by hyperbolic sine function,and activation energies were obtained to be 177 and 236 kJ/mol,respectively.Flow curves showed that the addition of Y element led to increase in peak stress and decrease in peak strain,and indicated that DRX started at lower strains in Mg-Zn-Y alloy than in Mg-Zn alloy.The stability domains of Mg-Zn-Y alloy were indicated in two domains as 1)300°C,0.001 s-1;350°C,0.01-0.1 s-1 and 400°C,0.01 s-1 and 2)450°C,0.01-0.1 s-1.Microstructural observations showed that DRX was the main restoration mechanism for alloys,and fully dynamic recrystallization of Mg-Zn-Y alloy was observed at 450°C.The instability domain in Mg-Zn-Y alloy was located significantly at high strain rates.In addition,the instability zone width of Mg-Zn and Mg-Zn-Y alloys increased with increasing strain,and cracks,twins and severe deformation were considered in these regions.展开更多
Performic acid (PFA) is an oxidant used in chemical processing, synthesis and bleaching. The macro kinetic models of synthesis, hydrolysis and decomposition of PFA were investigated via formic acid-autocatalyzed rea...Performic acid (PFA) is an oxidant used in chemical processing, synthesis and bleaching. The macro kinetic models of synthesis, hydrolysis and decomposition of PFA were investigated via formic acid-autocatalyzed reaction. It was found that the intrinsic activation energies of PFA synthesis and hydrolysis were 75.2 kJ·mol^-1 and 40.4 kJ·mol^-1 respectively. The observed activation energy of PFA decomposition was 95.4 kJ·mol^-1. The experi-mental results indicated that the decomposition of PFA was liable to occur even at the ambient temperature. Both the spontaneous decomposition and the radical-introduced decomposition contributed to the decomposition of PFA.展开更多
In order to utilize integrated passive technology in printed circuit boards (PCBs), manufacturing processing for integrated resistors by lamination method was investigated. Integrated resistors fabricated from Ohmeg...In order to utilize integrated passive technology in printed circuit boards (PCBs), manufacturing processing for integrated resistors by lamination method was investigated. Integrated resistors fabricated from Ohmega technologies in the experiment were 1 408 pieces per panel with four different patterns A, B, C and D and four resistance values of 25, 50, 75 and 100 fL Six panel per batch and four batches were performed totally. The testing was done for 960 pieces of integrated resistors randomly selected with the same size. The value distribution ranges and the relative standard deviation (RSD) show that the scatter degree of the resistance decreases with the resistor size increasing and/or with the resistance increasing. Patterns D with resistance of 75 and 100% for four patterns have the resistance value variances less than 10%. Patterns C and D with resistance of 100 Ω have the manufacturing tolerance less than 10%. The process capabilities are from about 0.6 to 1.6 for the designed testing patterns, which shows that the integrated resistors fabricated have the potential to be used in multilayer PCBs in the future.展开更多
Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the ...Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the same to the spheroidizationmechanisms of lamellar structure.Boundary splitting and termination migration are more important than coarsening due to the largesize of stripα.Theαstrips are stable in annealing due to the unfavorable geometrical orientation of intra-αboundaries,the largethickness of strip and the geometrical stability ofαparticles.Predeformation and low speed deformation accelerate globularization ofαstrips in the following ways:direct changing of particle shape,promotion of boundary splitting and termination migration byincreasing high angle grain boundaries and interfacial area,promotion of coarsening by forming dislocation structures.Largepredeformation combined with high temperature annealing is a feasible way to globularize stripα.展开更多
Thixoforging is a type of semi-solid metal processing at high solid fraction (0.7<φs<1), which involves the processing of alloys in the semi-solid state.Tooling has to be adapted to this particular process to b...Thixoforging is a type of semi-solid metal processing at high solid fraction (0.7<φs<1), which involves the processing of alloys in the semi-solid state.Tooling has to be adapted to this particular process to benefit shear thinning and thixotropic behaviour of such semi-solid material.Tooling parameters, such as the forming speed and tool temperature, have to be accurately controlled because of their influence on thermal exchanges between material flow and tool.These thermal exchanges influence the high-cracking tendency and the rheology of the semi-solid material during forming, which affects parts properties and therefore their quality.Extrusion tests show how thermal exchanges influence quality of thixoforged parts made of 7075 aluminium alloys at high solid fraction by modifying process parameters like forming speed, tool temperature and tool thermal protector.Thus an optimum in terms of thermal exchanges has to be found between surface quality and mechanical properties of the part.A direct application is the evaluation of surface quality of thixoforged thin wall parts made of 7075 aluminium alloy.展开更多
The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. The grey relational analysis was used to optimize the deep-drawing process parameters wit...The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. The grey relational analysis was used to optimize the deep-drawing process parameters with considerations of the multiple response (the wrinkle, crack and thinning variation). The deep-drawing parame- ters, such as the blank holding force (Fhh), the radii of punch and die (R1.R2), the coefficients of friction (μ1,μ2,μ3) are considered. An orthogonal array is used for the experimental design. The multiple response values are ob- tained making use of finite element analysis (FEA). Optimal process parameters are determined by the grey rela- tional grade obtained from the grey relational analysis for multi-performance characteristics (the wrinkle, crack and the thinning). The analysis of variance (ANOVA) for the grey relational grade is implemented. The results show that the quality of stamped parts can be improved effectively through the new approach. The grey relational analysis can be applied in sheet metal forming.展开更多
In The Structure of Scientific Revolutions, Kuhn claimed that theory choice is a conversion experience and depends upon the personality or psychology of the individual scientist making the choice. Critics charged Kuhn...In The Structure of Scientific Revolutions, Kuhn claimed that theory choice is a conversion experience and depends upon the personality or psychology of the individual scientist making the choice. Critics charged Kuhn with an irrational and a relativistic position concerning theory choice, arguing he advocated a subjective instead of an objective approach to how scientists choose one theory over another and thereby undercut epistemic accounts for the generation of scientific knowledge. In response to critics Kuhn insisted that his approach, although subjective, was still rational in that the criteria----vomposed of epistemic values--determining theory choice operate both objectively and subjectively. Recent work in cognitive neuropsychology, particularly in the dual-process theory of cognition, supports Kuhn's notion of theory choice. In this paper, I initially discuss Kuhn's approach to theory choice, along with criticism of it and his response to the criticism, followed by an examination of the dual-process theory of cognition. I then explore the application of dual-process theory to Kuhn's notion of theory choice, especially in terms of a historical case study from the biomedical sciences. I finally discuss briefly the implications of the dual-process theory for contemporary philosophy of science.展开更多
Retinal degenerative diseases may induce the degeneration of outer retina and in turn,blindness.Nevertheless,due to the maintenance of inner retina,the coding and processing of visual neurons responses are still able ...Retinal degenerative diseases may induce the degeneration of outer retina and in turn,blindness.Nevertheless,due to the maintenance of inner retina,the coding and processing of visual neurons responses are still able to be executed naturally.Therefore,an effective retinal prosthesis device may be developed by mimicking the function of outer retina:transferring the visual light into artificial stimulus and delivering the stimulus to the retina aiming to evoke the neural responses.As two main developing directions for current retinal prosthesis,epiretinal(ER)and subretinal(SR)prosthesis are both undergoing experimental stage and possessing advantages and limitations.Further investigations in power supply,biocompatibility,etc.are still required.Additionally,suprachoroidal transretinal stimulation(STS)and neurotransmitter-induced stimulation as some other alternatives in retinal prosthesis are also considered as promising research directions,although they are not mature enough to be applied commercially,either.展开更多
基金Projects (50935007,51205317) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of ChinaProject (B08040) supported by Research Fund of the 111 Project
文摘The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase.
基金Project (2011CB605505) supported by the National Basic Research Program of ChinaProject (2011JQ002) supported by the Fundamental Research Funds for the Central Universities, China
文摘Based on the analyses of the microstructures and phase diagrams of the TiAl-based alloy, the relationship among the composition, structure and mechanical properties of the B2-containing y-TiAI alloys was reviewed. The refinement of microstructures and improvement of mechanical properties of TiA1 alloy through stabilization of the β/B2 phase were reviewed. The mechanism of the superplastic behavior of the B2-containing y-TiAI alloys was discussed. With a reasonable addition of β-stabilizer, metastable B2 phase can be maintained, which is favorable for fine-grained structure and better high-temperature deformation behaviors. The mechanical properties of the B2-containing TiAI alloy, including the deformability and elevated temperature properties, can also be improved with doping elements and subsequent hot-working processes. The above mentioned researches discuss a new way for developing TiAI alloys with comprehensive properties, including good deformability and creep resistance.
文摘The microstructure and mechanical properties of extruded Mg-Zn alloy containing Y element were investigated in temperature range of 300-450°C and strain rate range of 0.001-1 s-1 through hot compression tests.Processing maps were used to indicate optimum conditions and instability zones for hot deformation of alloys.For Mg-Zn and Mg-Zn-Y alloys,peak stress,temperature and strain rate were related by hyperbolic sine function,and activation energies were obtained to be 177 and 236 kJ/mol,respectively.Flow curves showed that the addition of Y element led to increase in peak stress and decrease in peak strain,and indicated that DRX started at lower strains in Mg-Zn-Y alloy than in Mg-Zn alloy.The stability domains of Mg-Zn-Y alloy were indicated in two domains as 1)300°C,0.001 s-1;350°C,0.01-0.1 s-1 and 400°C,0.01 s-1 and 2)450°C,0.01-0.1 s-1.Microstructural observations showed that DRX was the main restoration mechanism for alloys,and fully dynamic recrystallization of Mg-Zn-Y alloy was observed at 450°C.The instability domain in Mg-Zn-Y alloy was located significantly at high strain rates.In addition,the instability zone width of Mg-Zn and Mg-Zn-Y alloys increased with increasing strain,and cracks,twins and severe deformation were considered in these regions.
基金Supported by the International Cooperation Project of the Ministry of Science and Technology of China (2010DFB40170)the National Basic Research Program of China (973 Program) (2011CB707406)
文摘Performic acid (PFA) is an oxidant used in chemical processing, synthesis and bleaching. The macro kinetic models of synthesis, hydrolysis and decomposition of PFA were investigated via formic acid-autocatalyzed reaction. It was found that the intrinsic activation energies of PFA synthesis and hydrolysis were 75.2 kJ·mol^-1 and 40.4 kJ·mol^-1 respectively. The observed activation energy of PFA decomposition was 95.4 kJ·mol^-1. The experi-mental results indicated that the decomposition of PFA was liable to occur even at the ambient temperature. Both the spontaneous decomposition and the radical-introduced decomposition contributed to the decomposition of PFA.
基金Project(041010) supported by Start-Up Foundation of Northwest University,ChinaProject(UIT/39) supported by University-Industry Collaboration Program from the Innovation and Technology Fund of Hong Kong,China
文摘In order to utilize integrated passive technology in printed circuit boards (PCBs), manufacturing processing for integrated resistors by lamination method was investigated. Integrated resistors fabricated from Ohmega technologies in the experiment were 1 408 pieces per panel with four different patterns A, B, C and D and four resistance values of 25, 50, 75 and 100 fL Six panel per batch and four batches were performed totally. The testing was done for 960 pieces of integrated resistors randomly selected with the same size. The value distribution ranges and the relative standard deviation (RSD) show that the scatter degree of the resistance decreases with the resistor size increasing and/or with the resistance increasing. Patterns D with resistance of 75 and 100% for four patterns have the resistance value variances less than 10%. Patterns C and D with resistance of 100 Ω have the manufacturing tolerance less than 10%. The process capabilities are from about 0.6 to 1.6 for the designed testing patterns, which shows that the integrated resistors fabricated have the potential to be used in multilayer PCBs in the future.
基金Projects(51205317,51575449) supported by the National Natural Science Foundation of ChinaProject(3102015AX004) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(104-QP-2014) supported by the Research Fund of the State Key Laboratory of Solidification Processing,China
文摘Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the same to the spheroidizationmechanisms of lamellar structure.Boundary splitting and termination migration are more important than coarsening due to the largesize of stripα.Theαstrips are stable in annealing due to the unfavorable geometrical orientation of intra-αboundaries,the largethickness of strip and the geometrical stability ofαparticles.Predeformation and low speed deformation accelerate globularization ofαstrips in the following ways:direct changing of particle shape,promotion of boundary splitting and termination migration byincreasing high angle grain boundaries and interfacial area,promotion of coarsening by forming dislocation structures.Largepredeformation combined with high temperature annealing is a feasible way to globularize stripα.
基金University of Liège,Walloon Region (First Europe Program Convention n°"NEP" 415824,THIXALU Project and MAGAL Project) and the COST 541 for their financial support
文摘Thixoforging is a type of semi-solid metal processing at high solid fraction (0.7<φs<1), which involves the processing of alloys in the semi-solid state.Tooling has to be adapted to this particular process to benefit shear thinning and thixotropic behaviour of such semi-solid material.Tooling parameters, such as the forming speed and tool temperature, have to be accurately controlled because of their influence on thermal exchanges between material flow and tool.These thermal exchanges influence the high-cracking tendency and the rheology of the semi-solid material during forming, which affects parts properties and therefore their quality.Extrusion tests show how thermal exchanges influence quality of thixoforged parts made of 7075 aluminium alloys at high solid fraction by modifying process parameters like forming speed, tool temperature and tool thermal protector.Thus an optimum in terms of thermal exchanges has to be found between surface quality and mechanical properties of the part.A direct application is the evaluation of surface quality of thixoforged thin wall parts made of 7075 aluminium alloy.
基金The National Natural Science Foundation of China (No50475020)
文摘The theory of grey systems is a new technique for performing prediction, relational analysis and decision making in many areas. The grey relational analysis was used to optimize the deep-drawing process parameters with considerations of the multiple response (the wrinkle, crack and thinning variation). The deep-drawing parame- ters, such as the blank holding force (Fhh), the radii of punch and die (R1.R2), the coefficients of friction (μ1,μ2,μ3) are considered. An orthogonal array is used for the experimental design. The multiple response values are ob- tained making use of finite element analysis (FEA). Optimal process parameters are determined by the grey rela- tional grade obtained from the grey relational analysis for multi-performance characteristics (the wrinkle, crack and the thinning). The analysis of variance (ANOVA) for the grey relational grade is implemented. The results show that the quality of stamped parts can be improved effectively through the new approach. The grey relational analysis can be applied in sheet metal forming.
文摘In The Structure of Scientific Revolutions, Kuhn claimed that theory choice is a conversion experience and depends upon the personality or psychology of the individual scientist making the choice. Critics charged Kuhn with an irrational and a relativistic position concerning theory choice, arguing he advocated a subjective instead of an objective approach to how scientists choose one theory over another and thereby undercut epistemic accounts for the generation of scientific knowledge. In response to critics Kuhn insisted that his approach, although subjective, was still rational in that the criteria----vomposed of epistemic values--determining theory choice operate both objectively and subjectively. Recent work in cognitive neuropsychology, particularly in the dual-process theory of cognition, supports Kuhn's notion of theory choice. In this paper, I initially discuss Kuhn's approach to theory choice, along with criticism of it and his response to the criticism, followed by an examination of the dual-process theory of cognition. I then explore the application of dual-process theory to Kuhn's notion of theory choice, especially in terms of a historical case study from the biomedical sciences. I finally discuss briefly the implications of the dual-process theory for contemporary philosophy of science.
文摘Retinal degenerative diseases may induce the degeneration of outer retina and in turn,blindness.Nevertheless,due to the maintenance of inner retina,the coding and processing of visual neurons responses are still able to be executed naturally.Therefore,an effective retinal prosthesis device may be developed by mimicking the function of outer retina:transferring the visual light into artificial stimulus and delivering the stimulus to the retina aiming to evoke the neural responses.As two main developing directions for current retinal prosthesis,epiretinal(ER)and subretinal(SR)prosthesis are both undergoing experimental stage and possessing advantages and limitations.Further investigations in power supply,biocompatibility,etc.are still required.Additionally,suprachoroidal transretinal stimulation(STS)and neurotransmitter-induced stimulation as some other alternatives in retinal prosthesis are also considered as promising research directions,although they are not mature enough to be applied commercially,either.