The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index met...The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.展开更多
The traditional quasiharmonic approximation cannot predict the phase diagram of Ti accu- rately, due to the well-known soften phonon modes of the β-Ti. By means of self-consistent ab initio lattice dynamics (SCAILD...The traditional quasiharmonic approximation cannot predict the phase diagram of Ti accu- rately, due to the well-known soften phonon modes of the β-Ti. By means of self-consistent ab initio lattice dynamics (SCAILD) method, in which the effects of phonon-phonon in- teractions are considered, the phonon dispersion relations at finite temperature for Ti are calculated. From the phonon dispersions, we extrapolat the acoustic velocities and harmonic elastic constants. The dynamical stable regions and phase diagram of Ti are also predicted successfully. The results show that SCAILD method can be designed to work for strongly anharmonic systems where the QHA fails.展开更多
Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperature...Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed.展开更多
The precipitation behaviors of the Cu-Ni-Si alloys during aging were studied by analyzing the variations of electric conductivity.The Avrami-equation of phase transformation kinetics and the Avrami-equation of electri...The precipitation behaviors of the Cu-Ni-Si alloys during aging were studied by analyzing the variations of electric conductivity.The Avrami-equation of phase transformation kinetics and the Avrami-equation of electric conductivity during aging were established for Cu-Ni-Si alloys,on the basis of linear relationship between the electric conductivity and the volume fraction of precipitates,and the calculation results coincide well with the experiment ones.The transformation kinetics curves were established to characterize the aging process.The characteristics of precipitates in the supersaturated solid solution alloy aged at 723 K were established,and the results show that the precipitates areβ-Ni3Si andδ-Ni2Si phases.展开更多
To efficiently co-extract Ni and Cu from low-grade nickel-copper sulfide ore,chlorination roasting with NH;Cl followed by a water leaching process was investigated.The results show that 98.4%Ni and 98.5%Cu can be sync...To efficiently co-extract Ni and Cu from low-grade nickel-copper sulfide ore,chlorination roasting with NH;Cl followed by a water leaching process was investigated.The results show that 98.4%Ni and 98.5%Cu can be synchronously extracted when the ore particle size is 75-80μm,the roasting time is 2 h,the mass ratio of NH;Cl to ore is 1.6:1 and the roasting temperature is 550°C.The evolution behavior of various minerals was elucidated using X-ray diffraction(XRD)coupled with scanning electron microscopy(SEM).The kinetics of the chlorination process based on the differential thermal and thermogravimetric analysis(DTA-TG)data was analyzed by Kissinger method and Flynn-Wall-Ozawa(FWO)method.The chlorination process of low-grade nickel-copper sulfide ore mainly contains two stages:the decomposition of NH;Cl and the chlorination of ore.The maximum apparent activation energies(Ea)at two stages are determined to be 114.8 and 144.6 kJ/mol,respectively.The condensed product of exhaust gas is determined to be ammonium chloride,which can be recycled as the reactant again,making the process economic and clean.展开更多
The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental...The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental observation under high resolution transmission electron microscopy.The results show that externally applied loading first induced the HCP to body-centered cubic(BCC)phase transition in the Pitsch-Schrader(PS)orientation relationship(OR).Then,the face-centered cubic(FCC)structure transformed from the BCC phase in the Bain path.However,the HCP-to-BCC transition was incomplete at 100 K and 300 K,resulting in a prismatic-type OR between the FCC and original HCP phase.Additionally,at the temperature ranging from 100 K to 600 K,the inverse BCC-to-HCP transition occurred locally following other variants of the PS OR,resulting in a basal-type relation between the newly generated HCP and FCC phases.A higher tensile temperature promoted the amount of FCC phase transforming into the BCC phase when the strain exceeded 45%.Besides,the crystal stretched at lower temperatures exhibits relatively higher strength but by the compromise of plasticity.This study reveals the deformation mechanisms in HCP-Zr at different temperatures,which may provide a better understanding of the deformation mechanism of zirconium alloys under different application environments.展开更多
In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical...In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical properties such as high formability, high toughness and adequate strength. For this reason it is relevant to identify and determine the volume fraction of the ferrite, bainite and martensite present in the structure. The microalloying elements: V, Nb and Ti promote carbides precipitation during cooling. The precipitates control the grain size refinement during hot rolling process and the mechanical properties of the steel. In this sense it is necessary to increase the knowledge on the microstructure evolution at different cooling rates. In this paper, the results obtained on two low carbon microalloyed steels (with C contents between 0.11%-0.06%) are reported. An integrated methodology including dilatometry in combination with microscopy techniques was applied. By EBSD (Electron Backscatter Diffraction) technique and microhardness measurements, the structural study was completed. Through a thermodynamic simulation using Fact Sage the type of precipitates in the studied steels structure at the temperature range between 950 ℃ and 450 ℃, were predicted. The information on the evolution of the steel structure at rolling process conditions is relevant to consider changes in processing conditions.展开更多
The fast phase-transitional process of ploy(N-isopropylacrylamide) (PNIPAM) in deuterated solution was studied by laser induced temperature jump technique combined with time-resolved mid-infrared absorbance differ...The fast phase-transitional process of ploy(N-isopropylacrylamide) (PNIPAM) in deuterated solution was studied by laser induced temperature jump technique combined with time-resolved mid-infrared absorbance difference spectroscopy on nanosecond level. The multi-peaks of amide I'band of PNIPAM among the energy range of 1565-1700 cm^-1 was experimentally resolved to three groups (i, ii, iii) for the first time, while the distinct threestage procedure in the phase transitional process of long-chain PNIPAM was observed firstly too. Furthermore, proper assignments were also made for the three group peaks in amide I'band and the three steps in the kinetics process of long-chain PNIPAM.展开更多
In this paper we propose an Ising model on an infinite ladder lattice, which is made of two infinite Ising spin chains with interactions. It is essentially a quasi-one-dimessional Ising model because the length of the...In this paper we propose an Ising model on an infinite ladder lattice, which is made of two infinite Ising spin chains with interactions. It is essentially a quasi-one-dimessional Ising model because the length of the ladder lattice is infinite, while its width is finite. We investigate the phase transition and dynamic behavior of Ising model on this quasi-one-dimessional system. We use the generalized transfer matrix method to investigate the phase transition of the system. It is found that there is no nonzero temperature phase transition in this system. At the same time, we are interested in Glauber dynamics. Based on that, we obtain the time evolution of the local spin magnetization by exactly solving a set of master equations.展开更多
Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser sc...Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser scanning microscope, and the austenite isothermal and non-isothermal transformation kinetics were studied by dilatometry. The results indicate that banded structure is produced for the reason of composition segregation and the competition between recrystallization and phase transformation. Austenite prefers to nucleate not only at ferrite/ferrite grain boundaries, but also inside the grains of ferrite.Furthermore, the austenitizing process is accomplished mainly via migration of the existing austenite/ferrite interface rather than nucleation of new grains. The incubation process can be divided into two stages which are controlled by carbon and manganese diffusion, respectively. During the incubation process, the nucleation rate of austenite decreases, and austenite growth changes from two-dimensional to one-dimensional. The partitioning coefficient, defined as the ratio of manganese content in the austenite to that in the adjacent ferrite, increases with increasing soaking time.展开更多
The effect of stochastic dephasing on the dynamics of entanglement of qutrit-qutrit states is investigated by using negativity and bound entanglement defined with realignment criterion, From the analysis, we, find tha...The effect of stochastic dephasing on the dynamics of entanglement of qutrit-qutrit states is investigated by using negativity and bound entanglement defined with realignment criterion, From the analysis, we, find that the time evolution of quantum free entanglement and bound entanglement depends on the fluctuations of the stochastic variables and the parameters of the particular initial states of concern. Our results imply that some qutrits states display both distillability sudden death and entanglement sudden death, while some states do not display distillability sudden death but only entanglement sudden death.展开更多
The dynamic model experiment of the rock filling embankment was carried out to investigate the vibration compaction mechanism. The rock filling materials were compacted by the plate-vibrated compactor, and the charact...The dynamic model experiment of the rock filling embankment was carried out to investigate the vibration compaction mechanism. The rock filling materials were compacted by the plate-vibrated compactor, and the characteristics of the rock filling materials, such as settlement, pressure change and response waveform, were measured by the dynamic earth pressure gauge and aceelerometer. Moreover, a new method for detecting the compactness of the rock filling embankment was proposed based on the maximum dry density and modulus of deformation. The results show that the process of vibration compaction includes compact, elastic deformation and loose stages, and the vibratory pressure transfers to the surroundings from the vibration center in non-linear rule. Furthermore, the test results obtained by the present method are basically in agreement with those obtained by the traditional method, and the maximum relative error between them is about 0.5%.展开更多
The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbo...The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbon in the stone coal burned and produced CO_(2) in sufficient oxygen during roasting.The mass loss of stone coal mainly occurred within the temperature range from 600 to 840℃,and the thermal decomposition reaction rate increased to the peak at approximately 700℃.Verified by the Flynn−Wall−Ozawa(FWO)and Kissinger−Akahira−Sunose(KAS)methods,the thermal decomposition reaction of stone coal was described by the Ginstling−Brounshtein equation.The apparent activation energy and pre-exponential factors were 136.09 kJ/mol and 12.40 s^(−1),respectively.The illite in stone coal lost hydroxyl groups and produced dehydrated illite at 650℃,and the structure of sericite was gradually destroyed.The surface of stone coal became rough and irregular as the temperature increased.Severe sintering occurred at the roasting temperature of 850℃.展开更多
Deconlinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-fla...Deconlinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconlined quark phase. We include a perturbative QCD correction parameter αs in the CFL quark matter equation of states. It is shown that the CFL quark core with K^0 condensation forms in neutron star matter with the large value of αs. If the small value of αs is taken, hyperons suppress the CFL quark phase and the liP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter as or decreasing the bag constant B and the strange quark mass ms can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter αs.展开更多
There are many automatic organization phenomena and automatic organization unities in the universe. The automatic organization whole refers to a life body with the thinking. The thinking is the core of automatic organ...There are many automatic organization phenomena and automatic organization unities in the universe. The automatic organization whole refers to a life body with the thinking. The thinking is the core of automatic organization. The thinking is at eternal restless motion and binds to substances. The universe, organism and society are the automatic organization unities or life systems with the thinking. The thinking can perceive, attract, drive, organize and control all individuals and it is a force of life structure or universal gravitation and universal repulsion. The thinking has a life structure, a template and dynamic of entity-life's automatic organization. Life body has five dynamic systems: the thinking motion and information flow, breathing motion, closed-loop current (particle flow) and energy flow, interaction among state-varying, state-stabilizing and control organizations and active & automatic chemical-physical reactions, cardiac pulsation and active motion and transportation. Human, galaxies and society can change from low to high energy state initiatively. This is realized by controlling the desires of life entity via the thinking and breathing motions and by altering the body's binding forces dominating the life entity (in turn, by bond force, strong interaction and quark confinement). All forces in the universe present in the universe of life: force of the thinking-universal gravitation and universal repulsion, electromagnetic interaction, bond force, strong interaction, quark confinement and weak interaction. Under the automatic organization of the thinking, these forces bind into a 4-season' whole. The united state of these forces is controlled by the thinking and breathing motion, which is capable of changing from 3-, 2- and 1-dimensional states to a 0-dimensional state.展开更多
We have studied why PA (post-annealing) takes a long time to restore damaged crystallinity, which corresponds to repeat 10 10 times of lattice vibrations. Using a MD (molecular dynamics) simulation, we monitored t...We have studied why PA (post-annealing) takes a long time to restore damaged crystallinity, which corresponds to repeat 10 10 times of lattice vibrations. Using a MD (molecular dynamics) simulation, we monitored the time-series of the LRO (long-range order) parameter as LRO pattern, in the case of a type IIa diamond, from the beginning of ion impact by a sub-keV N2 beam implantation to a few nanoseconds, i.e., close to the feasible time limit for MD simulations. Due to the ion impact, the LRO parameter changed gradually from "LRO = 1" (crystal) to "LRO = 0" (amorphous), showing the so-called critical slowing-down phenomenon. However, since PA was started the LRO pattern was not unique. The LRO patterns were grouped into more than three types of phases and the transition between them was also found. From the viewpoint of statistical dynamics, such chaotic variations in the LRO pattern may present that the system is a GCM (globally coupled map) of a complex system in a closed system. A GCM composed of coupled oscillators develops slowly to exhibit several different phases or ‘chaotic itinerancy' over time. Therefore, the long duration required for PA may be attributable to the nature of a complex system.展开更多
In equilibrium statistical field theory, the partition function has fundamental importance. In this paper we propose a direct and general method for calculating the partition function and equation of state of QCD at f...In equilibrium statistical field theory, the partition function has fundamental importance. In this paper we propose a direct and general method for calculating the partition function and equation of state of QCD at finite chemical potential. It is found that the partition function is totally determined by the dressed quark propagator at finite chemical potential up to a multiplicative constant. From this a criterion for the phase transition between the Nambu and the Wigner phases is obtained. This general method is applied to two specific cases: the free quark theory and QCD with a model dressed quark propagator having confinement features. In the first case, the standard Fermi distribution at T = 0 is reproduced. In the second case, we apply the conclusion in previous works to obtain the dressed quark propagator at finite chemical potential and find the unphysical result that the baryon number density vanishes for all values of chemical potential. The reason for this result is discussed.展开更多
In this paper, we study the geometrothermodynamics of (2 + 1)-dimensional spinning dilaton black hole. We show that the Ruppeiner curvature vanishes, which implies that there exist no phase transitions and thermody...In this paper, we study the geometrothermodynamics of (2 + 1)-dimensional spinning dilaton black hole. We show that the Ruppeiner curvature vanishes, which implies that there exist no phase transitions and thermodynamic interactions. However when the thermodynamics fluctuation is included, the geometry structure is reconsidered. The non-vanishing Ruppeiner curvature is obtained, which means the phase space is non-flat. We also study the phase transitions and show that it can indeed take D/ace at some points.展开更多
基金Projects (50831003, 50571037) supported by the National Natural Science Foundation of China
文摘The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.
基金This work was supported by the National Nat- ural Science Foundation of China (No.11304408 and No.1347019), the NSAF (No.U1230201), the Natural Science Foundation of Chongqing City (No.cstc2012jjA50019 and No.cstc2013jcyjA0733), the China Postdoctoral Science Foundation (No.2014M552380 and No.2014M552541XB).
文摘The traditional quasiharmonic approximation cannot predict the phase diagram of Ti accu- rately, due to the well-known soften phonon modes of the β-Ti. By means of self-consistent ab initio lattice dynamics (SCAILD) method, in which the effects of phonon-phonon in- teractions are considered, the phonon dispersion relations at finite temperature for Ti are calculated. From the phonon dispersions, we extrapolat the acoustic velocities and harmonic elastic constants. The dynamical stable regions and phase diagram of Ti are also predicted successfully. The results show that SCAILD method can be designed to work for strongly anharmonic systems where the QHA fails.
基金Project(51205302)supported by the National Natural Science Foundation of ChinaProject(2013JM7017)supported by the Natural Science Basic Research Plan in Shanxi Province of ChinaProject(K5051304006)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed.
基金Project(2006AA03Z517) supported by the National High-tech Research and Development Program of ChinaProject(08MX15) supported by the Mittal Programs of Central South University, China
文摘The precipitation behaviors of the Cu-Ni-Si alloys during aging were studied by analyzing the variations of electric conductivity.The Avrami-equation of phase transformation kinetics and the Avrami-equation of electric conductivity during aging were established for Cu-Ni-Si alloys,on the basis of linear relationship between the electric conductivity and the volume fraction of precipitates,and the calculation results coincide well with the experiment ones.The transformation kinetics curves were established to characterize the aging process.The characteristics of precipitates in the supersaturated solid solution alloy aged at 723 K were established,and the results show that the precipitates areβ-Ni3Si andδ-Ni2Si phases.
基金the National Natural Science Foundation of China(No.52074069)the Natural Science Foundation of Hebei Province(No.E2020501022)+1 种基金the National Basic Research Program of China(No.2014CB643405)the Fundamental Research Funds for the Central Universities,China(No.N2223027)。
文摘To efficiently co-extract Ni and Cu from low-grade nickel-copper sulfide ore,chlorination roasting with NH;Cl followed by a water leaching process was investigated.The results show that 98.4%Ni and 98.5%Cu can be synchronously extracted when the ore particle size is 75-80μm,the roasting time is 2 h,the mass ratio of NH;Cl to ore is 1.6:1 and the roasting temperature is 550°C.The evolution behavior of various minerals was elucidated using X-ray diffraction(XRD)coupled with scanning electron microscopy(SEM).The kinetics of the chlorination process based on the differential thermal and thermogravimetric analysis(DTA-TG)data was analyzed by Kissinger method and Flynn-Wall-Ozawa(FWO)method.The chlorination process of low-grade nickel-copper sulfide ore mainly contains two stages:the decomposition of NH;Cl and the chlorination of ore.The maximum apparent activation energies(Ea)at two stages are determined to be 114.8 and 144.6 kJ/mol,respectively.The condensed product of exhaust gas is determined to be ammonium chloride,which can be recycled as the reactant again,making the process economic and clean.
基金Projects(51901248,51828102)supported by the National Natural Science Foundation of ChinaProject(2018JJ3649)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2019CX026)supported by the Innovation-driven Plan in Central South University,China。
文摘The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental observation under high resolution transmission electron microscopy.The results show that externally applied loading first induced the HCP to body-centered cubic(BCC)phase transition in the Pitsch-Schrader(PS)orientation relationship(OR).Then,the face-centered cubic(FCC)structure transformed from the BCC phase in the Bain path.However,the HCP-to-BCC transition was incomplete at 100 K and 300 K,resulting in a prismatic-type OR between the FCC and original HCP phase.Additionally,at the temperature ranging from 100 K to 600 K,the inverse BCC-to-HCP transition occurred locally following other variants of the PS OR,resulting in a basal-type relation between the newly generated HCP and FCC phases.A higher tensile temperature promoted the amount of FCC phase transforming into the BCC phase when the strain exceeded 45%.Besides,the crystal stretched at lower temperatures exhibits relatively higher strength but by the compromise of plasticity.This study reveals the deformation mechanisms in HCP-Zr at different temperatures,which may provide a better understanding of the deformation mechanism of zirconium alloys under different application environments.
文摘In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical properties such as high formability, high toughness and adequate strength. For this reason it is relevant to identify and determine the volume fraction of the ferrite, bainite and martensite present in the structure. The microalloying elements: V, Nb and Ti promote carbides precipitation during cooling. The precipitates control the grain size refinement during hot rolling process and the mechanical properties of the steel. In this sense it is necessary to increase the knowledge on the microstructure evolution at different cooling rates. In this paper, the results obtained on two low carbon microalloyed steels (with C contents between 0.11%-0.06%) are reported. An integrated methodology including dilatometry in combination with microscopy techniques was applied. By EBSD (Electron Backscatter Diffraction) technique and microhardness measurements, the structural study was completed. Through a thermodynamic simulation using Fact Sage the type of precipitates in the studied steels structure at the temperature range between 950 ℃ and 450 ℃, were predicted. The information on the evolution of the steel structure at rolling process conditions is relevant to consider changes in processing conditions.
基金This work was supported by the National Natural Science Foundation of China (No.20673107), the National Key Basic Research Special Foundation of China (No.2007CB815203), and the Knowledge Innovation Foundation of the Chinese Academy of Science (No.KJCX2-SW-H08).
文摘The fast phase-transitional process of ploy(N-isopropylacrylamide) (PNIPAM) in deuterated solution was studied by laser induced temperature jump technique combined with time-resolved mid-infrared absorbance difference spectroscopy on nanosecond level. The multi-peaks of amide I'band of PNIPAM among the energy range of 1565-1700 cm^-1 was experimentally resolved to three groups (i, ii, iii) for the first time, while the distinct threestage procedure in the phase transitional process of long-chain PNIPAM was observed firstly too. Furthermore, proper assignments were also made for the three group peaks in amide I'band and the three steps in the kinetics process of long-chain PNIPAM.
文摘In this paper we propose an Ising model on an infinite ladder lattice, which is made of two infinite Ising spin chains with interactions. It is essentially a quasi-one-dimessional Ising model because the length of the ladder lattice is infinite, while its width is finite. We investigate the phase transition and dynamic behavior of Ising model on this quasi-one-dimessional system. We use the generalized transfer matrix method to investigate the phase transition of the system. It is found that there is no nonzero temperature phase transition in this system. At the same time, we are interested in Glauber dynamics. Based on that, we obtain the time evolution of the local spin magnetization by exactly solving a set of master equations.
基金Project(2013AA031601)supported by the National High Technology Research and Development Program of ChinaProject(2012BAF04B01)supported by the National Science and Technology Pillar Program During the 12th Five-year Plan Period of China
文摘Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser scanning microscope, and the austenite isothermal and non-isothermal transformation kinetics were studied by dilatometry. The results indicate that banded structure is produced for the reason of composition segregation and the competition between recrystallization and phase transformation. Austenite prefers to nucleate not only at ferrite/ferrite grain boundaries, but also inside the grains of ferrite.Furthermore, the austenitizing process is accomplished mainly via migration of the existing austenite/ferrite interface rather than nucleation of new grains. The incubation process can be divided into two stages which are controlled by carbon and manganese diffusion, respectively. During the incubation process, the nucleation rate of austenite decreases, and austenite growth changes from two-dimensional to one-dimensional. The partitioning coefficient, defined as the ratio of manganese content in the austenite to that in the adjacent ferrite, increases with increasing soaking time.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10947115, 10975125, and 11004001
文摘The effect of stochastic dephasing on the dynamics of entanglement of qutrit-qutrit states is investigated by using negativity and bound entanglement defined with realignment criterion, From the analysis, we, find that the time evolution of quantum free entanglement and bound entanglement depends on the fluctuations of the stochastic variables and the parameters of the particular initial states of concern. Our results imply that some qutrits states display both distillability sudden death and entanglement sudden death, while some states do not display distillability sudden death but only entanglement sudden death.
基金Project (50708033) supported by the National Natural Science Foundation of ChinaProject (20070532067) supported by Doctoral Foundation of Ministry of Education of China
文摘The dynamic model experiment of the rock filling embankment was carried out to investigate the vibration compaction mechanism. The rock filling materials were compacted by the plate-vibrated compactor, and the characteristics of the rock filling materials, such as settlement, pressure change and response waveform, were measured by the dynamic earth pressure gauge and aceelerometer. Moreover, a new method for detecting the compactness of the rock filling embankment was proposed based on the maximum dry density and modulus of deformation. The results show that the process of vibration compaction includes compact, elastic deformation and loose stages, and the vibratory pressure transfers to the surroundings from the vibration center in non-linear rule. Furthermore, the test results obtained by the present method are basically in agreement with those obtained by the traditional method, and the maximum relative error between them is about 0.5%.
基金the Fundamental Research Funds for the Central Universities of China(No.N2101023).
文摘The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbon in the stone coal burned and produced CO_(2) in sufficient oxygen during roasting.The mass loss of stone coal mainly occurred within the temperature range from 600 to 840℃,and the thermal decomposition reaction rate increased to the peak at approximately 700℃.Verified by the Flynn−Wall−Ozawa(FWO)and Kissinger−Akahira−Sunose(KAS)methods,the thermal decomposition reaction of stone coal was described by the Ginstling−Brounshtein equation.The apparent activation energy and pre-exponential factors were 136.09 kJ/mol and 12.40 s^(−1),respectively.The illite in stone coal lost hydroxyl groups and produced dehydrated illite at 650℃,and the structure of sericite was gradually destroyed.The surface of stone coal became rough and irregular as the temperature increased.Severe sintering occurred at the roasting temperature of 850℃.
基金National Natural Science Foundation of China under Grant Nos.10575005,10435080,10425521,10135030,and 10575123the Key Grant Project of the Ministry of Education under Grant No.305001the CAS Knowledge Innovation Project under Grant No.KJcx2-sw-No2
文摘Deconlinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconlined quark phase. We include a perturbative QCD correction parameter αs in the CFL quark matter equation of states. It is shown that the CFL quark core with K^0 condensation forms in neutron star matter with the large value of αs. If the small value of αs is taken, hyperons suppress the CFL quark phase and the liP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter as or decreasing the bag constant B and the strange quark mass ms can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter αs.
文摘There are many automatic organization phenomena and automatic organization unities in the universe. The automatic organization whole refers to a life body with the thinking. The thinking is the core of automatic organization. The thinking is at eternal restless motion and binds to substances. The universe, organism and society are the automatic organization unities or life systems with the thinking. The thinking can perceive, attract, drive, organize and control all individuals and it is a force of life structure or universal gravitation and universal repulsion. The thinking has a life structure, a template and dynamic of entity-life's automatic organization. Life body has five dynamic systems: the thinking motion and information flow, breathing motion, closed-loop current (particle flow) and energy flow, interaction among state-varying, state-stabilizing and control organizations and active & automatic chemical-physical reactions, cardiac pulsation and active motion and transportation. Human, galaxies and society can change from low to high energy state initiatively. This is realized by controlling the desires of life entity via the thinking and breathing motions and by altering the body's binding forces dominating the life entity (in turn, by bond force, strong interaction and quark confinement). All forces in the universe present in the universe of life: force of the thinking-universal gravitation and universal repulsion, electromagnetic interaction, bond force, strong interaction, quark confinement and weak interaction. Under the automatic organization of the thinking, these forces bind into a 4-season' whole. The united state of these forces is controlled by the thinking and breathing motion, which is capable of changing from 3-, 2- and 1-dimensional states to a 0-dimensional state.
文摘We have studied why PA (post-annealing) takes a long time to restore damaged crystallinity, which corresponds to repeat 10 10 times of lattice vibrations. Using a MD (molecular dynamics) simulation, we monitored the time-series of the LRO (long-range order) parameter as LRO pattern, in the case of a type IIa diamond, from the beginning of ion impact by a sub-keV N2 beam implantation to a few nanoseconds, i.e., close to the feasible time limit for MD simulations. Due to the ion impact, the LRO parameter changed gradually from "LRO = 1" (crystal) to "LRO = 0" (amorphous), showing the so-called critical slowing-down phenomenon. However, since PA was started the LRO pattern was not unique. The LRO patterns were grouped into more than three types of phases and the transition between them was also found. From the viewpoint of statistical dynamics, such chaotic variations in the LRO pattern may present that the system is a GCM (globally coupled map) of a complex system in a closed system. A GCM composed of coupled oscillators develops slowly to exhibit several different phases or ‘chaotic itinerancy' over time. Therefore, the long duration required for PA may be attributable to the nature of a complex system.
基金National Natural Science Foundation of China under Grant No.10575050the Research Fund for the Doctoral Program of Higher Education under Grant No.20060284020
文摘In equilibrium statistical field theory, the partition function has fundamental importance. In this paper we propose a direct and general method for calculating the partition function and equation of state of QCD at finite chemical potential. It is found that the partition function is totally determined by the dressed quark propagator at finite chemical potential up to a multiplicative constant. From this a criterion for the phase transition between the Nambu and the Wigner phases is obtained. This general method is applied to two specific cases: the free quark theory and QCD with a model dressed quark propagator having confinement features. In the first case, the standard Fermi distribution at T = 0 is reproduced. In the second case, we apply the conclusion in previous works to obtain the dressed quark propagator at finite chemical potential and find the unphysical result that the baryon number density vanishes for all values of chemical potential. The reason for this result is discussed.
基金Supported by the National Natural Science Foundation of China under Grant No.10705013
文摘In this paper, we study the geometrothermodynamics of (2 + 1)-dimensional spinning dilaton black hole. We show that the Ruppeiner curvature vanishes, which implies that there exist no phase transitions and thermodynamic interactions. However when the thermodynamics fluctuation is included, the geometry structure is reconsidered. The non-vanishing Ruppeiner curvature is obtained, which means the phase space is non-flat. We also study the phase transitions and show that it can indeed take D/ace at some points.