The Fe-Ti binary system was re-assessed using the CALPHAD method in order to improve the capability of being extrapolated to a ternary or higher-order system. Compared with previous assessments, the main focus was put...The Fe-Ti binary system was re-assessed using the CALPHAD method in order to improve the capability of being extrapolated to a ternary or higher-order system. Compared with previous assessments, the main focus was put on the thermodynamic description of the two intermetallic compounds Fe2Ti and FeTi. The C14_Laves phase Fe2Ti was described by the two-sublattice model, which is widely used at present. By checking the homogeneity range on the boundary of the ternary systems involving the binary, the phase boundary of this compound was further confirmed. The FeTi phase with a BCC_B2 crystal structure was treated as the ordered phase of the BCC_A2 phase and a unified Gibbs energy function was used to describe both the ordered and disordered phases. Reproduction of the specific heat capacities of these compounds was another aspect paid particular attention to. Comprehensive comparisons of the calculated and experimental results regarding the phase diagram and thermodynamic properties show a good agreement between them and prove the validity of the present thermodynamic description.展开更多
The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and th...The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and the tricritical point are obtained in the transverse field Ω/ zJ-longitudinal crystal D / zJ field plane. We find that there are the first order-order phase transitions in a very small range of D /zJ besides the usual first order-disorder phase transitions and the second order-disorder phase transitions,展开更多
We study the finite-size scaling behavior of velocity and central charge for different coupling constants and different phases in -dimensional lattice model in very short chains. Using XXZ spin 1/2 chains with 15 or f...We study the finite-size scaling behavior of velocity and central charge for different coupling constants and different phases in -dimensional lattice model in very short chains. Using XXZ spin 1/2 chains with 15 or fewer sites, we demonstrate the weak finite-size dependence of spinon velocity for any magnitude of coupling strength and the strong phase dependence of central charge. This behavior of velocity and central charge in different coupling constants and different phases gives a method to determine phase transitions of -dimensional models. This method is simple and efficient by utilizing only the ground state energy of very short finite-size chains. It is also general and powerful for various one-dimensional lattice models and it uncovers even the weakest Berezinski?Kosterlitz?Thouless phase transitions.展开更多
The critical behaviors of a mixed spin-1/2 and spin-sB Ising system with a transverse crystal field are studiedby use of the effective-field theory with correlations. The effect of the transverse crystal field on tran...The critical behaviors of a mixed spin-1/2 and spin-sB Ising system with a transverse crystal field are studiedby use of the effective-field theory with correlations. The effect of the transverse crystal field on transition temperaturesis investigated numerically for the honeycomb (z = 3) and square (z = 4) lattices. The results show that there is notricritical point for the system.展开更多
基金Project (IP08-092009) supported by Sino Swiss Science and Technology Cooperation (SSSTC)Project (50971136) supported by the National Natural Science Foundation of ChinaProject (1343-71134001013) supported by the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China
文摘The Fe-Ti binary system was re-assessed using the CALPHAD method in order to improve the capability of being extrapolated to a ternary or higher-order system. Compared with previous assessments, the main focus was put on the thermodynamic description of the two intermetallic compounds Fe2Ti and FeTi. The C14_Laves phase Fe2Ti was described by the two-sublattice model, which is widely used at present. By checking the homogeneity range on the boundary of the ternary systems involving the binary, the phase boundary of this compound was further confirmed. The FeTi phase with a BCC_B2 crystal structure was treated as the ordered phase of the BCC_A2 phase and a unified Gibbs energy function was used to describe both the ordered and disordered phases. Reproduction of the specific heat capacities of these compounds was another aspect paid particular attention to. Comprehensive comparisons of the calculated and experimental results regarding the phase diagram and thermodynamic properties show a good agreement between them and prove the validity of the present thermodynamic description.
文摘The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and the tricritical point are obtained in the transverse field Ω/ zJ-longitudinal crystal D / zJ field plane. We find that there are the first order-order phase transitions in a very small range of D /zJ besides the usual first order-disorder phase transitions and the second order-disorder phase transitions,
文摘We study the finite-size scaling behavior of velocity and central charge for different coupling constants and different phases in -dimensional lattice model in very short chains. Using XXZ spin 1/2 chains with 15 or fewer sites, we demonstrate the weak finite-size dependence of spinon velocity for any magnitude of coupling strength and the strong phase dependence of central charge. This behavior of velocity and central charge in different coupling constants and different phases gives a method to determine phase transitions of -dimensional models. This method is simple and efficient by utilizing only the ground state energy of very short finite-size chains. It is also general and powerful for various one-dimensional lattice models and it uncovers even the weakest Berezinski?Kosterlitz?Thouless phase transitions.
基金The project supported by Science Foundation of the Ministry of Education of China under Grant No.99026
文摘The critical behaviors of a mixed spin-1/2 and spin-sB Ising system with a transverse crystal field are studiedby use of the effective-field theory with correlations. The effect of the transverse crystal field on transition temperaturesis investigated numerically for the honeycomb (z = 3) and square (z = 4) lattices. The results show that there is notricritical point for the system.