本文客观比较了《Method of Testing Active Latent-Heat Storage Devices Based on Thermal Performance》(ASHRAE Standard 94.1-2010)与我国的《无内置热源相变蓄热装置》(T/CECS 10023-2019)在测试对象的范围,实验室条件约束,实验装...本文客观比较了《Method of Testing Active Latent-Heat Storage Devices Based on Thermal Performance》(ASHRAE Standard 94.1-2010)与我国的《无内置热源相变蓄热装置》(T/CECS 10023-2019)在测试对象的范围,实验室条件约束,实验装置,测试方法流程,以及测试指标这几个重要方面的差异,为相关从业者充分理解此类产品热性能测试方法提供了参考。展开更多
We study entangling and disentangling functions of optical Fourier multiport devices in which input-output relation for the creation and annihilation operators is given by a finite Fourier transform. It is shown that ...We study entangling and disentangling functions of optical Fourier multiport devices in which input-output relation for the creation and annihilation operators is given by a finite Fourier transform. It is shown that these Fourier multiport devices can act as entanglement converters which can not only create entanglement from an unentangled state at the input but also destroy entanglement in an entangled state at the input. Creation and destruction of two-mode and three-mode entangled coherent states (ECSs) are investigated in detail. The creation and destruction of Bell-type two-mode ECS, GHZ-type and W-type three-mode ECSs are indicated explicitly through using Fourier four-port and six-port devices, respectively.展开更多
A method to generate Airy beam by combining the Fresnel holographic lens and the cubic phase of Airy beam is proposed. The detailed theoretical derivation to express the optical transform principle of the proposed met...A method to generate Airy beam by combining the Fresnel holographic lens and the cubic phase of Airy beam is proposed. The detailed theoretical derivation to express the optical transform principle of the proposed method is presented. And excellent experimental results are demonstrated. It is shown that this approach works well and simplifies the experimental facility effectively, especially reducing the optical system length to half of that of the conventional method. In addition, the proposed method can realize the beam propagation trajectory control of Airy beam and generate Airy beam array.展开更多
文摘为提高相变蓄热装置的性能,基于平板热管技术设计了一套相变蓄热装置,将熔点58℃的工业石蜡作为该蓄热装置的蓄热材料,对平板微热管阵列在蓄/放热过程的均温性能、蓄热装置内部石蜡温度变化以及蓄热装置的蓄/放热效率进行实验分析,同时对不同供/取热流体温度和流量的实验条件下蓄热装置蓄/放热特性进行研究.结果表明:平板微热管阵列在蓄/放热过程中性能稳定,蓄热装置蓄/放热效果良好;在供/取热流体流量为2.0 L/min,供热流体温度为80℃,取热流体温度为20℃的实验条件下,计算得到该蓄热装置平均蓄热功率、放热功率分别为662、764 W.
文摘本文客观比较了《Method of Testing Active Latent-Heat Storage Devices Based on Thermal Performance》(ASHRAE Standard 94.1-2010)与我国的《无内置热源相变蓄热装置》(T/CECS 10023-2019)在测试对象的范围,实验室条件约束,实验装置,测试方法流程,以及测试指标这几个重要方面的差异,为相关从业者充分理解此类产品热性能测试方法提供了参考。
基金Supported by National Natural Science Foundation of China under Grant Nos. 10325523 and 10775048the National Fundamental Research Program of China under Grant No. 2007CB925204the Key Project of Education Department of Hunan Province under Grant No. 08w012
文摘We study entangling and disentangling functions of optical Fourier multiport devices in which input-output relation for the creation and annihilation operators is given by a finite Fourier transform. It is shown that these Fourier multiport devices can act as entanglement converters which can not only create entanglement from an unentangled state at the input but also destroy entanglement in an entangled state at the input. Creation and destruction of two-mode and three-mode entangled coherent states (ECSs) are investigated in detail. The creation and destruction of Bell-type two-mode ECS, GHZ-type and W-type three-mode ECSs are indicated explicitly through using Fourier four-port and six-port devices, respectively.
文摘A method to generate Airy beam by combining the Fresnel holographic lens and the cubic phase of Airy beam is proposed. The detailed theoretical derivation to express the optical transform principle of the proposed method is presented. And excellent experimental results are demonstrated. It is shown that this approach works well and simplifies the experimental facility effectively, especially reducing the optical system length to half of that of the conventional method. In addition, the proposed method can realize the beam propagation trajectory control of Airy beam and generate Airy beam array.