期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
季铵盐复合相变材料的相变温度预测方法
1
作者 陈威 钱静 张伟 《当代化工》 CAS 2019年第10期2183-2186,共4页
以典型无机结晶水合盐四丁基氯化铵(Tetrabutylammonium chloride,TBAC)、四丁基溴化铵(Tetrabutylammonium bromide,TBAB)、四丁基溴化磷(Tetrabutylphosphonium bromide,TBPB)为原料,探究其混合水溶液相变温度与季铵盐组分配比的理论... 以典型无机结晶水合盐四丁基氯化铵(Tetrabutylammonium chloride,TBAC)、四丁基溴化铵(Tetrabutylammonium bromide,TBAB)、四丁基溴化磷(Tetrabutylphosphonium bromide,TBPB)为原料,探究其混合水溶液相变温度与季铵盐组分配比的理论关系.差示扫描量热仪(DSC)测试结果表明,在混合溶液质量分数为40%时,各配比复合体系均表现为唯一的相变峰,融合性良好.TBPB/TBAB和TBPB/TBAC复合体系的相变温度调节范围分别为5.91~11.69 ℃和5.92~14.33 ℃.利用Origin软件对两种复合体系的季铵盐组分配比-相变温度曲线进行拟合,所得预测公式的相关系数R2分别达到0.964 7和0.952 1,预测误差小于5%. 展开更多
关键词 相变储能 复合相变材料 Asymptotic1拟合 相变温度预测
下载PDF
基于SAPSO-BP的CO_(2)相变致裂效果预测及敏感度分析
2
作者 张增辉 王长禄 邢迎欢 《煤炭技术》 CAS 北大核心 2023年第4期172-177,共6页
液态CO_(2)相变致裂效果受很多因素影响,针对BP神经网络收敛速度慢且易陷入局部最优解的问题,为提高模型的预测精度和泛化能力,采用SAPSO算法优化BP神经网络的权值和阈值,并采用MATLAB软件编写构建了SAPSO-BP算法,基于仿真得到的35组数... 液态CO_(2)相变致裂效果受很多因素影响,针对BP神经网络收敛速度慢且易陷入局部最优解的问题,为提高模型的预测精度和泛化能力,采用SAPSO算法优化BP神经网络的权值和阈值,并采用MATLAB软件编写构建了SAPSO-BP算法,基于仿真得到的35组数据,使用SAPSO-BP,PSO-BP,BP模型以及多元线性回归模型对致裂效果进行预测,其平均相对误差分别为2.73%、7.1%、14.6%、13.9%。平均绝对误差分别为0.068、0.169、0.239、0.314 m。表明:SAPSO-BP算法预测精度最高,提高了BP模型的预测精度,其精度满足工程实际需要。并采用Sobol指数法探究了相关影响因素对有效致裂半径的敏感度,表明:敏感度由高到低依次为地应力、弹性模量、瓦斯压力、泄放压力、致裂器间距、钻孔直径、抗拉强度,可为CO_(2)相变致裂的工程设计提供理论支持。 展开更多
关键词 CO_(2)相变致裂效果预测 退火粒子群算法 SAPSO-BP神经网络 MATLAB Sobol指数法
下载PDF
人工神经网络在材料科学研究中的应用 被引量:18
3
作者 樊新民 孔见 金波 《材料导报》 EI CAS CSCD 2002年第4期28-30,21,共4页
人工神经网络模型已成为材料科学中广泛使用的技术,综述了人工神经网络在材料设计、材料加工的智能控制、材料相变研究和材料性能预测等方面的应用。
关键词 人工神经网络 材料科学 计算机应用 材料设计 成分优化 力学性能 材料加工 相变规律预测
下载PDF
气液混输管道组分跟踪及相变量预测
4
作者 亓佳宁 樊迪 +4 位作者 张明思 宋尚飞 张久达 史博会 宫敬 《油气储运》 CAS 北大核心 2023年第2期215-222,共8页
气液混输过程中存在相间能量消耗、相间传质等现象,从而影响管内介质的流动状态和管道运行参数,气液相的组成也会不断变化。利用LedaFlow软件对某实际气液混输管道进行稳态模拟,对比分析物性表模型和组分跟踪模型得到的管道沿线参数模... 气液混输过程中存在相间能量消耗、相间传质等现象,从而影响管内介质的流动状态和管道运行参数,气液相的组成也会不断变化。利用LedaFlow软件对某实际气液混输管道进行稳态模拟,对比分析物性表模型和组分跟踪模型得到的管道沿线参数模拟结果以验证组分跟踪法的可靠性,进而开展管道瞬态模拟,分析流体组成的变化规律并预测气液两相相变量。结果表明:该管道内流体沿程液化,气相摩尔流量下降,其瞬态流动过程为一个气相不断液化的过程;在稳态模拟中采用LedaFlow相平衡计算方式,即按照各相的流量占比与静止状态下的气液相分布相同的原则,可更为准确地确定流动过程中的相变量。研究成果可为气液混输管道中相变规律预测提供理论基础,提升气液混输管道流动安全评价的准确性。(图11,表2,参23) 展开更多
关键词 气液混输管道 组分跟踪 LedaFlow 相变预测
原文传递
Phase Transition Analysis Based Quality Prediction for Multi-phase Batch Processes 被引量:3
5
作者 赵露平 赵春晖 高福荣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1191-1197,共7页
Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them conside... Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method. 展开更多
关键词 MULTI-PHASE TRANSITION partial least squares quality prediction batch process
下载PDF
Support Vector Machines(SVM)-Markov Chain Prediction Model of Mining Water Inflow 被引量:2
6
作者 Kai HUANG 《Agricultural Science & Technology》 CAS 2017年第8期1551-1554,1558,共5页
This study was conducted to establish a Support Vector Machines(SVM)-Markov Chain prediction model for prediction of mining water inflow. According to the raw data sequence, the Support Vector Machines(SVM) model was ... This study was conducted to establish a Support Vector Machines(SVM)-Markov Chain prediction model for prediction of mining water inflow. According to the raw data sequence, the Support Vector Machines(SVM) model was built, and then revised by means of a Markov state change probability matrix. Through dividing the state and analyzing absolute errors and relative errors and other indexes of the measured value and the fitted value of SVM, the prediction results were improved. Finally,the model was used to calculate relative errors. Through predicting and analyzing mining water inflow, the prediction results of the model were satisfactory. The results of this study enlarge the application scope of the Support Vector Machines(SVM) prediction model and provide a new method for scientific forecasting water inflow in coal mining. 展开更多
关键词 Mining water inflow Support Vector Machines (SVM) Markov Chain
下载PDF
Finite Set-Model Predictive Current Control of Three-Phase Voltage Source Inverter for RES (Renewable Energy Systems) Applications
7
作者 Ali Almaktoof Atanda Raji Tariq Kahn 《Journal of Energy and Power Engineering》 2014年第4期749-756,共8页
This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (f... This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system. 展开更多
关键词 Finite set-model predictive control three-phase voltage source inverter renewable energy system application AC filter Matlab/Simulink.
下载PDF
热轧带钢FeO共析转变动力学行为分析与预测 被引量:1
8
作者 王皓 曹光明 +2 位作者 单文超 崔春圆 刘振宇 《钢铁》 CAS CSCD 北大核心 2023年第9期178-184,共7页
热轧后的带钢表面会形成氧化铁皮,其中的FeO在卷取之后的冷却过程中会发生共析相变,形成由Fe与Fe_(3)O_(4)共同组成的共析组织。传统对FeO共析相变的研究,多集中在诸如化学成分、相变环境等因素对共析反应的定性分析上,但针对相变的具... 热轧后的带钢表面会形成氧化铁皮,其中的FeO在卷取之后的冷却过程中会发生共析相变,形成由Fe与Fe_(3)O_(4)共同组成的共析组织。传统对FeO共析相变的研究,多集中在诸如化学成分、相变环境等因素对共析反应的定性分析上,但针对相变的具体进程却少有模型化的分析和计算。同时,由于实际生产中FeO的相变过程多是在连续冷却过程中发生,相变过程受到了不同时刻温度变化的叠加影响,这也加大了研究的困难程度。为此,以常见的普碳钢为例,首先使用同步热分析仪进行了不同温度及时间下氧化铁皮的等温结构转变试验,统计了30个试验节点下的共析组织在FeO中的体积分数,之后基于Johnson-Mehl-Avrami-Kolmogorov(JMAK)方程建立了FeO在等温过程下共析相变的动力学模型,通过试验数据求解其中的关键参数,得到了等温转变条件下FeO中共析组织体积分数与时间的关系,可直接绘制描述FeO共析转变的Time-Temperature-Transformation(TTT)曲线。在此基础上,结合Scheil可加性法则,建立了连续冷却过程中FeO的共析相变模型,通过计算模型常数,实现连续冷却转变过程中FeO共析组织体积分数的预测。经过试验的验证,预测得到的FeO共析相变体积分数与试验数值基本保持一致,证明了本模型的可用性,实现对FeO的相变过程更加具象化的分析与描述,为FeO的共析相变行为研究提供了新的解决方案。 展开更多
关键词 氧化铁皮 共析相变 FEO 相变动力学 相变预测
原文传递
基于LIBS的Ni-Al与Ni-Fe合金相变实时监测研究 被引量:3
9
作者 陈远鹏 宋立军 《应用激光》 CSCD 北大核心 2018年第4期637-643,共7页
为了解决金属合金增材制造中相变检测的材料损伤,针对金属合金增材制造提出一种基于激光诱导等离子光谱学(LIBS)的实时相变监测方法。试验采集激光熔覆Ni-Al与Ni-Fe合金的连续激光激发光谱信号,然后检测熔覆材料物相组成与成分,最后使... 为了解决金属合金增材制造中相变检测的材料损伤,针对金属合金增材制造提出一种基于激光诱导等离子光谱学(LIBS)的实时相变监测方法。试验采集激光熔覆Ni-Al与Ni-Fe合金的连续激光激发光谱信号,然后检测熔覆材料物相组成与成分,最后使用飞秒激光烧蚀上述Ni-Al与Ni-Fe合金并采集对应的飞秒激光激发光谱信号。对于采集的光谱信号,采用谱线强度比构建标定曲线分析其与物相组成的关系并针对两种合金分别建立了四条标定曲线。结果显示,当物相组成随着Ni元素浓度增加而由γ'-Ni3Al和β-NiAl相向β-NiAl和γ-Ni相转变时,连续与飞秒激光谱线强度比随着成分改变的标定曲线线性趋势在80.57at.%Ni时发生突变,而当物相组成为Ni3Fe相且随着Ni元素浓度增加未改变时,谱线强度比随着成分改变的标定曲线的线性趋势不发生改变。标定曲线的线性趋势的改变可以有效地预测物相组成的改变且连续与飞秒激光光谱标定曲线有着相同的变化趋势。 展开更多
关键词 激光诱导等离子体 相变预测 光谱检测 物相组成
原文传递
A SELF-SIMILAR LOCAL NEURO-FUZZY MODEL FOR SHORT-TERM DEMAND FORECASTING 被引量:2
10
作者 HASSANI Hossein ABDOLLAHZADEH Majid +1 位作者 IRANMANESH Hossein MIRANIAN Arash 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期3-20,共18页
This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed ... This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed of a number of local models, each being a local linear neurofuzzy (LLNF) model, and their associated validity functions and can be interpreted itself as an LLNF model. The proposed model is trained by a nested local liner model tree (NLOLIMOT) learning algorithm which partitions the input space into axisorthogonal subdomains and then fits an LLNF model and its associated validity function on each subdomain. Furthermore, the proposed approach allows different input spaces for rule premises (validity functions) and consequents (local models). This appealing property is employed to assign the candidate input variables (i.e., previous load and temperature) which influence shortterm electricity demand in linear and nonlinear ways to local models and validity functions, respectively. Numerical results from shortterm load forecasting in the New England in 2002 demonstrated the accuracy of the SSLNF model for the STLF applications. 展开更多
关键词 Mutual information self-similar local neuro-fuzzy model short-term load forecasting.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部