In this paper, we discuss a discrete time repairable queuing system with Markovian arrival process, where lifetime of server, service time and repair time of server are all discrete phase type random variables. Using...In this paper, we discuss a discrete time repairable queuing system with Markovian arrival process, where lifetime of server, service time and repair time of server are all discrete phase type random variables. Using the theory of matrix geometric solution, we give the steady state distribution of queue length and waiting time. In addition, the stable availability of the system is also provided.展开更多
A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstru...A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstructures and compression mechanical properties.The distribution uniformity of reinforcements and cooperation relationship among dislocation mechanisms were considered in the modified mixed strengthening model by introducing a distribution uniformity factor u and a cooperation coefficient fc,respectively.The results show that the modified mixed strengthening model can accurately describe the yield strengths of Al3Ti/2024Al composites with a relative deviation less than1.2%,which is much more accurate than other strengthening models.The modified mixed model can also be used to predict the yield strength of Al3Ti/2024Al composites with different fractions of reinforcements.展开更多
The paper considers the problem of representing non-Markovian systems that evolve stochastically over time. It is often necessary to use approximations in the case the system is non-Markovian. Phase type distribution ...The paper considers the problem of representing non-Markovian systems that evolve stochastically over time. It is often necessary to use approximations in the case the system is non-Markovian. Phase type distribution is by now indispensable tool in creation of stochastic system models. The paper suggests a method and software for evaluating stochastic systems approximations by Markov chains with continuous time and countable state space. The performance of a system is described in the event language used for generating the set of states and transition matrix between them. The example of a numerical model is presented.展开更多
In this paper, we find an analytic solution of the master equation of a non-resonant two-photon Jaynes- Cummings model (JCM) with phase damping with the help of the super-operator technique. We study the influence o...In this paper, we find an analytic solution of the master equation of a non-resonant two-photon Jaynes- Cummings model (JCM) with phase damping with the help of the super-operator technique. We study the influence of phase damping on non-classical effects in the JCM, such as oscillations of the photon-number distribution, revivals of the atomic inversion, and sub-Possion photon statistics. It is demonstrated that the phase damping suppresses the revivals of the atomic inversion and non-classical effects of the cavity field in the JCM.展开更多
The trajectory model of dispersed phase drops and distribution model of drop diameters were derived.By numerical simulation,the analytical results indicate that a large number of dispersed phase drops accumulate on th...The trajectory model of dispersed phase drops and distribution model of drop diameters were derived.By numerical simulation,the analytical results indicate that a large number of dispersed phase drops accumulate on the upper plate in different directions and form a hydrodynamic area with the stream-wise location in the range of 0—0.4m,where the flow of trickling film obtains kinetic drive from flowing field.The flowing field of trickling film exhibits an unstable state if the stream-wise location is less than 0.02m,and a stable state otherwise.Moreover,different velocity vectors of drops in the x-y plane result in different interactions between the trickling film and drops.For the non-uniform distribution of drop diameters,there is a stronger interaction between the trickling film and drop if the stream-wise location is less than 0.02m,because the amplitudes of velocity vectors are higher than those in the range of 0.02—1.0m.The result reveals a complexity and diversity of stratified two-phase flowing field.On the other hand,both the basic flowing field and distributions of drop diameters have a great influence on the distributions of comparable kinetic energy of drops.The complicated motions of larger drops are helpful to coalescence because they will consume much more kinetic energy on the trickling film than those of smaller drops.The change of comparable kinetic energy of smaller drops is continuous and steady.The smaller drops are easily entrained by the liquid-liquid flowing field.展开更多
Fluid invasion through fractures is frequently observed in subsurface engineering. To elucidate the microkinetic behavior of fracture fluids, the microfracture structure of coal from the Surat Basin was reconstructed ...Fluid invasion through fractures is frequently observed in subsurface engineering. To elucidate the microkinetic behavior of fracture fluids, the microfracture structure of coal from the Surat Basin was reconstructed using a 3D morphometric system and stitching algorithm, then the transparent models characterizing the fracture structure were produced using microfluidics, and water invasion in the microfracture model was measured via visualization experiments under various conditions. High flow rate facilitated the invasion of the water phase into the closed channel, improving the efficiency of water invasion in the neutral wetting system. Wettability reversal changed the dominant channel for water invasion in the hydrophobic system. The invasion efficiency in closed and small aperture bypass channels was low.The reduction of effective seepage channels led to the fastest breakthrough time. Higher surface tension and interfacial curvature promoted the hysteresis effect. The reduction of effective seepage channels led to the fastest breakthrough time. The larger surface tension and interfacial curvature make the hysteresis effect more significant. These results will enable a better understanding of the rock-gas-liquid multiphase interaction mechanisms under unsaturated conditions of rocks.展开更多
Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- ...Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.展开更多
The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, ...The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February-March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–209.2)×106 and (0.75–15.4)×106 cells/cm2 in the abundance, and 1.93–52.3 and 1.57–32.4 μgC/cm2 in the carbon biomass, for SYN and PEUK, respectively. The horizontal distributions of both groups were diurnal but heterogeneous in abundance, depending on the groups and layer of depths. Temperature is the key controlling factor for picophytoplankton distribution (especially in winter) in the Strait.展开更多
In order to investigate the temperature distribution, a three-dimensional finite element model (FEM) was developed to simulate the temperature regime in the channels of double-loop inductor, and the simulated result...In order to investigate the temperature distribution, a three-dimensional finite element model (FEM) was developed to simulate the temperature regime in the channels of double-loop inductor, and the simulated results were compared with experimental data from low load trials of a 400 kW inductor. The results of numerical simulations, such as the temperature and Joule heating rate, show reasonable correlation with experimental data. The results indicate that Joule heating rate and the temperature reach the maximum at the comers and the minimum at the centre of the cross-section area. The temperature difference between the inlet and outlet is in an inverse proportion to mass transport. Joule heating rate and the temperature are directly proportional to power frequency. It is concluded that mass transport and power frequency play a critical role in determining the temperature regime and Joule heating rate, the relative permeability of the magnetic core shows no significant influence on temperature regime and Joule heating rate, when the relative permeability varies from 5 000 to 10 000.展开更多
Generally,the Doppler caused by the velocity of the detector leads to distortion of the integrated profile of the X-ray pulsar,on the contrary,if the distortion can be used to measure the Doppler,then the velocity of ...Generally,the Doppler caused by the velocity of the detector leads to distortion of the integrated profile of the X-ray pulsar,on the contrary,if the distortion can be used to measure the Doppler,then the velocity of the detector is easy to be solved.In view of this,the correlation of the periodic error arise from the Doppler and the integrated profile was analyzed,then,based on the Poisson distribution model of the X-ray Pulsar,a new signal model and the concept of the profile entropy was defined.Furthermore,the directly cumulated profile of the signal was modeled with the Doppler as a parameter,and then the Doppler was solved via optimal method.Simultaneously,the performance of phase measurement based on this method was studded.The analysis shows that this method can get rid of the periodic error due to the discrete sampling,and can obtain continuous phase estimation.The experiment verification shows the consistency of the theory and the experiment.展开更多
Based on theoretical analysis of PCM(Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with...Based on theoretical analysis of PCM(Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA(National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.展开更多
文摘In this paper, we discuss a discrete time repairable queuing system with Markovian arrival process, where lifetime of server, service time and repair time of server are all discrete phase type random variables. Using the theory of matrix geometric solution, we give the steady state distribution of queue length and waiting time. In addition, the stable availability of the system is also provided.
基金Projects (51875121,51405100) supported by the National Natural Science Foundation of ChinaProjects (2014M551233,2017T100237) supported by the China Postdoctoral Science Foundation+2 种基金Project (ZR2017PA003) supported by the Natural Science Foundation of Shandong Province,ChinaProject (2017GGX202006) supported by the Plan of Key Research and Development of Shandong Province,ChinaProject (2016DXGJMS05) supported by the Plan of Science and Technology Development of Weihai,China
文摘A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstructures and compression mechanical properties.The distribution uniformity of reinforcements and cooperation relationship among dislocation mechanisms were considered in the modified mixed strengthening model by introducing a distribution uniformity factor u and a cooperation coefficient fc,respectively.The results show that the modified mixed strengthening model can accurately describe the yield strengths of Al3Ti/2024Al composites with a relative deviation less than1.2%,which is much more accurate than other strengthening models.The modified mixed model can also be used to predict the yield strength of Al3Ti/2024Al composites with different fractions of reinforcements.
文摘The paper considers the problem of representing non-Markovian systems that evolve stochastically over time. It is often necessary to use approximations in the case the system is non-Markovian. Phase type distribution is by now indispensable tool in creation of stochastic system models. The paper suggests a method and software for evaluating stochastic systems approximations by Markov chains with continuous time and countable state space. The performance of a system is described in the event language used for generating the set of states and transition matrix between them. The example of a numerical model is presented.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10274093, 10474118, and 10474120, the Natural Science Foundation of Hunan Province of China under Grant No. 05JJ3005, the Youth-Core Teachers Foundation of Hunan Province of China under Grant No. 2003165, and the Science Research Foundation of Educational Department of Hunan Province of China under Grant No. 05C756
文摘In this paper, we find an analytic solution of the master equation of a non-resonant two-photon Jaynes- Cummings model (JCM) with phase damping with the help of the super-operator technique. We study the influence of phase damping on non-classical effects in the JCM, such as oscillations of the photon-number distribution, revivals of the atomic inversion, and sub-Possion photon statistics. It is demonstrated that the phase damping suppresses the revivals of the atomic inversion and non-classical effects of the cavity field in the JCM.
基金Supported by Natural Science Foundation of Tianjin (No.09JCYBJC06400,No.10 JCZDJC23300)
文摘The trajectory model of dispersed phase drops and distribution model of drop diameters were derived.By numerical simulation,the analytical results indicate that a large number of dispersed phase drops accumulate on the upper plate in different directions and form a hydrodynamic area with the stream-wise location in the range of 0—0.4m,where the flow of trickling film obtains kinetic drive from flowing field.The flowing field of trickling film exhibits an unstable state if the stream-wise location is less than 0.02m,and a stable state otherwise.Moreover,different velocity vectors of drops in the x-y plane result in different interactions between the trickling film and drops.For the non-uniform distribution of drop diameters,there is a stronger interaction between the trickling film and drop if the stream-wise location is less than 0.02m,because the amplitudes of velocity vectors are higher than those in the range of 0.02—1.0m.The result reveals a complexity and diversity of stratified two-phase flowing field.On the other hand,both the basic flowing field and distributions of drop diameters have a great influence on the distributions of comparable kinetic energy of drops.The complicated motions of larger drops are helpful to coalescence because they will consume much more kinetic energy on the trickling film than those of smaller drops.The change of comparable kinetic energy of smaller drops is continuous and steady.The smaller drops are easily entrained by the liquid-liquid flowing field.
基金Projects(52174159, 52074169, 52174026, 51904167, 52004146) supported by the National Nature Science Foundation of ChinaProject(ZR2020QE102) supported by the Natural Science Foundation Youth Branch of Shandong Province,ChinaProject(SKLMRDPC21KF06) supported by the Open Fund for State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines,China。
文摘Fluid invasion through fractures is frequently observed in subsurface engineering. To elucidate the microkinetic behavior of fracture fluids, the microfracture structure of coal from the Surat Basin was reconstructed using a 3D morphometric system and stitching algorithm, then the transparent models characterizing the fracture structure were produced using microfluidics, and water invasion in the microfracture model was measured via visualization experiments under various conditions. High flow rate facilitated the invasion of the water phase into the closed channel, improving the efficiency of water invasion in the neutral wetting system. Wettability reversal changed the dominant channel for water invasion in the hydrophobic system. The invasion efficiency in closed and small aperture bypass channels was low.The reduction of effective seepage channels led to the fastest breakthrough time. Higher surface tension and interfacial curvature promoted the hysteresis effect. The reduction of effective seepage channels led to the fastest breakthrough time. The larger surface tension and interfacial curvature make the hysteresis effect more significant. These results will enable a better understanding of the rock-gas-liquid multiphase interaction mechanisms under unsaturated conditions of rocks.
基金Supported by the Natural Science Foundation of China under Grant No.10774053the Natural Science Foundation of Hubei Province of China under Grant No.2007ABA035
文摘Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.
基金Supported by Natural Science Foundation of China (No.40730846 40521003)
文摘The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February-March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–209.2)×106 and (0.75–15.4)×106 cells/cm2 in the abundance, and 1.93–52.3 and 1.57–32.4 μgC/cm2 in the carbon biomass, for SYN and PEUK, respectively. The horizontal distributions of both groups were diurnal but heterogeneous in abundance, depending on the groups and layer of depths. Temperature is the key controlling factor for picophytoplankton distribution (especially in winter) in the Strait.
基金Project(50876116) supported by the National Natural Science Foundation of ChinaProject(2007CK3077) supported by the Innovative Program of Hunan Science and Technology Agency, ChinaProject(1343-77225) supported by the Graduate School of Central South University, China
文摘In order to investigate the temperature distribution, a three-dimensional finite element model (FEM) was developed to simulate the temperature regime in the channels of double-loop inductor, and the simulated results were compared with experimental data from low load trials of a 400 kW inductor. The results of numerical simulations, such as the temperature and Joule heating rate, show reasonable correlation with experimental data. The results indicate that Joule heating rate and the temperature reach the maximum at the comers and the minimum at the centre of the cross-section area. The temperature difference between the inlet and outlet is in an inverse proportion to mass transport. Joule heating rate and the temperature are directly proportional to power frequency. It is concluded that mass transport and power frequency play a critical role in determining the temperature regime and Joule heating rate, the relative permeability of the magnetic core shows no significant influence on temperature regime and Joule heating rate, when the relative permeability varies from 5 000 to 10 000.
基金supported by the National High Technology Research and Development Program of China (Grant No.2007AA12Z323)the National Natural Science Foundation of China (Grant No.60772139)
文摘Generally,the Doppler caused by the velocity of the detector leads to distortion of the integrated profile of the X-ray pulsar,on the contrary,if the distortion can be used to measure the Doppler,then the velocity of the detector is easy to be solved.In view of this,the correlation of the periodic error arise from the Doppler and the integrated profile was analyzed,then,based on the Poisson distribution model of the X-ray Pulsar,a new signal model and the concept of the profile entropy was defined.Furthermore,the directly cumulated profile of the signal was modeled with the Doppler as a parameter,and then the Doppler was solved via optimal method.Simultaneously,the performance of phase measurement based on this method was studded.The analysis shows that this method can get rid of the periodic error due to the discrete sampling,and can obtain continuous phase estimation.The experiment verification shows the consistency of the theory and the experiment.
基金financially supported by National Natural Science Foundation of China(Grant No.51476172)
文摘Based on theoretical analysis of PCM(Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA(National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.