Monte Carlo simulations were used to investigate the compatibilizing behaviors of multi-block copolymers with different architectures in A/B/(block copolymer) ternary blends. The volume fraction of homopolymer A, em...Monte Carlo simulations were used to investigate the compatibilizing behaviors of multi-block copolymers with different architectures in A/B/(block copolymer) ternary blends. The volume fraction of homopolymer A, employed as the dispersed phase, was 19%. The simulations illustrate how a di- or multi-block copolymer aggregates at the interfaces and influences the phase behaviour of such incompatible polymer blends. The di-block copolymer chains tend to "stand" on the interface whereas the multi-block chains lie on the interface. In comparison with the di-block copolymer, the block copolymers with 4, or 10 blocks can occupy more areas on the interface, and thus the multi-block copolymers have higher efficiency for the retardation of the phase separation.展开更多
Corporate governance is the focus of all stakeholders in the balance of contradictions and conflicts in the view of corporatc behavior theory, harmonious governance may be the development direction of future corporate...Corporate governance is the focus of all stakeholders in the balance of contradictions and conflicts in the view of corporatc behavior theory, harmonious governance may be the development direction of future corporate governance. The article explains the framework of harmonious governance based on the theory of corporate behavior, and holds that shareholder value and stakeholder value is as important as, combination of incentive-compatible and mutually compatible, interaction between market governance and relationship governance, is a major innovation path of harmonious corporate governance by stakeholders.展开更多
The purpose of our paper is to obtain a common fixed point theorem for two pairs of self-mappings of compatible of type (K) in a complete intuitionistic fuzzy Metric space with example. Our result generalized and im...The purpose of our paper is to obtain a common fixed point theorem for two pairs of self-mappings of compatible of type (K) in a complete intuitionistic fuzzy Metric space with example. Our result generalized and improves similar other results in literature.展开更多
A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the a...A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the active carbon shell precursor.The structures of the composites were examined by scanning electron microscopy and X-ray diffractometry.The electrochemical performance was investigated in electric double layer capacitor and half-cell.The results show that,the composite exhibits good performance in both capacitor and battery with a high reversible capacity of 306.6 mA·h/g(0.2C) in the half-cell,along with a capacitance of 25.8 F/g in the capacitor when an optimum ratio of carbonaceous mesophase spherules to active carbon is adopted.The composite also shows a favorable rate performance and good cycle ability.A working model of this anode in super lithium ion capacitors was established.展开更多
A synthetic diblock copolymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (PEOz-PLA) can self-assemble into micelles with an increased efficiency of drug delivery. However, the interactions of blood-micelles and...A synthetic diblock copolymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (PEOz-PLA) can self-assemble into micelles with an increased efficiency of drug delivery. However, the interactions of blood-micelles and cell-micelles remain unclear. In the present study, we aimed to assess the hemocompatibility and cytocompatibility of PEOz-PLA micelles in order to clarify its potentials as carriers for drug delivery. Blood compatibility of the micelles was evaluated by hemolysis analysis, coagulation test, platelet activation investigation and assessment of their interaction with protein. The results revealed that PEOz-PLA micelles had a favorable blood compatibility. In addition, PEOz-PLA micelles showed a good cytocompatibility through SRB assay, presenting only negligible cytotoxicity when incubated with KBv cells. Taken together, PEOz-PLA micelles could be used as a hemocompatible and cytocompatible drug carrier for intravenous administration.展开更多
Magnesium alloys have shown prospective applications as a new biodegradable metal within bone. To garantee the longterm biocompatibility, a Mg-Zn-Ca alloy,composing of essential elements for human, was prepared and it...Magnesium alloys have shown prospective applications as a new biodegradable metal within bone. To garantee the longterm biocompatibility, a Mg-Zn-Ca alloy,composing of essential elements for human, was prepared and its feasibility for orthopedic applications was investigated. The in vitro and in vivo corrosion of Mg-Zn-Ca alloy as well as the biocompatibility were studied. The in vitro corrosion tests in five kinds of physiological solutions showed that the corrosion rates and corrosion morphologies of the alloy were strongly influenced by the solution used. The addition of serum in Hank’s and MEM significantly slowed down the corrosion rate and improved the corrosion uniformity of the alloy. The corrosion rate decreased with increasing serum concentration.The alloy showed the slowest corrosion rate as well as homogeneous corrosion morphology in MEM+10%FBS. Both the indirect and direct cell experiments indicated good cytocompatibility of the extruded Mg-Zn-Ca alloy. In vivo, we observed a gradual degradation process from the surface of extruded Mg-Zn-Ca alloy and only 40% in volume of implant was left after 4 weeks implantation in medullary cavities of mice. The micro-CT and histological analyses revealed its good biocompatibility with peri-implant new bone formation and increasing cortical bone thickness with increasing implantation period. This study showed that the extruded MgZn-Ca alloy provided sufficient biocompatibility for orthopedic application, though the in vivo corrosion rate should be further reduced for clinical use.展开更多
Ruthenium complexes which can bind to DNA via electrostatic and intercalation interactions producing strong luminescence have become ideal candidates for DNA staining. However, some of them such as Ru(phen)_3Cl_2 and ...Ruthenium complexes which can bind to DNA via electrostatic and intercalation interactions producing strong luminescence have become ideal candidates for DNA staining. However, some of them such as Ru(phen)_3Cl_2 and Ru(phen)_2(dppz)Cl_2 could hardly cross the cellular membrane of live cells which limited their further interaction with DNA in live cells. To solve this problem, a potential approach is to find a proper vehicle for loading and delivery of these ruthenium complexes into live cells.Mesoporous silica nanoparticles(MSNs) with non-toxicity and good biocompatibility can be good candidates. More importantly,ruthenium complexes with positively charge could be loaded on negatively charged MSNs via electrostatic attractions to form MSNs-Ru hybrid. In vitro test demonstrated that MSNs had no side effects on the interactions between Ru complexes and DNA.Furthermore, it is found that the MSNs-Ru hybrid can enter into living human cervical cancer cells HeLa and stain the DNA while the corresponding ruthenium complexes alone could hardly cross the cellular membrane in the control experiment, demonstrating MSNs can be employed to be an efficient ruthenium complexes delivery nanomaterial for live cell staining.展开更多
Forming a stable anti-corrosion surface layer on magnesium(Mg)and its alloys has become a major challenge in developing a desirable degradable medical implant in bone.In this study,a porous MgO layer was first formed ...Forming a stable anti-corrosion surface layer on magnesium(Mg)and its alloys has become a major challenge in developing a desirable degradable medical implant in bone.In this study,a porous MgO layer was first formed on Mg by plasma electrolytic oxidation(PEO),and then a Mg-Al layered double hydroxide(LDH)layer was prepared to seal the porous structure of the PEO layer(LDH-2h and LDH-12h)via hydrothermal treatment.The bilayer structure composite coating,which can effectively resist the penetration of surrounding media,is similar to plain Chinese tiles.The in vitro results revealed that compared with other coatings,the LDH-12h composite coating can reduce the release of Mg ions and induce a milder change in pH when immersed in phosphate-buffered saline(PBS).In vitro rat bone marrow stem cell(rBMSC)culture suggested that the LDH-12h composite coating is favorable for cell activity,proliferation and could improve the osteogenic activity of rBMSCs.A subcutaneous implantation test revealed that the as-prepared sample showed enhanced corrosion resistance and histocompatibility in vivo,especially in the LDH-12h group.Moreover,LDH-12h had the lowest rate of degradation and the closest combination with the new bone after being inserted into a rat femur for 12 weeks with no major organ dysfunction.In summary,the asprepared PEO/Mg-Al LDH composite coating is able to improve the corrosion resistance and biocompatibility of Mg and to enhance osteogenic activity in vivo,suggesting its promising prospects for orthopedic applications.展开更多
Chirality is a unique phenomenon in nature. Chiral interactions play an important role in biological and physiological process- es, which provides much inspiration for scientists to develop cbiral materials. As a brea...Chirality is a unique phenomenon in nature. Chiral interactions play an important role in biological and physiological process- es, which provides much inspiration for scientists to develop cbiral materials. As a breakthrough from traditional materials, bi- ointerface materials based on chiral polymers have attracted increasing interest over the past few years. Such materials ele- gantly combine the advantages of chiral surfaces and traditional polymers, and provide a novel solution not only for the inves- tigation of chiral interaction mechanisms but also for the design of biomaterials with diverse applications, such as in tissue en- gineering and biocompatible materials, bioregulation, chiral separation and chiral sensors. Herein, we summarize recent ad- vances in the study of chiral effects and applications of chiral polymer-based biointerface materials, and also present some challenges and perspectives.展开更多
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20374050) and SRFDP (No.20050358018).
文摘Monte Carlo simulations were used to investigate the compatibilizing behaviors of multi-block copolymers with different architectures in A/B/(block copolymer) ternary blends. The volume fraction of homopolymer A, employed as the dispersed phase, was 19%. The simulations illustrate how a di- or multi-block copolymer aggregates at the interfaces and influences the phase behaviour of such incompatible polymer blends. The di-block copolymer chains tend to "stand" on the interface whereas the multi-block chains lie on the interface. In comparison with the di-block copolymer, the block copolymers with 4, or 10 blocks can occupy more areas on the interface, and thus the multi-block copolymers have higher efficiency for the retardation of the phase separation.
文摘Corporate governance is the focus of all stakeholders in the balance of contradictions and conflicts in the view of corporatc behavior theory, harmonious governance may be the development direction of future corporate governance. The article explains the framework of harmonious governance based on the theory of corporate behavior, and holds that shareholder value and stakeholder value is as important as, combination of incentive-compatible and mutually compatible, interaction between market governance and relationship governance, is a major innovation path of harmonious corporate governance by stakeholders.
文摘The purpose of our paper is to obtain a common fixed point theorem for two pairs of self-mappings of compatible of type (K) in a complete intuitionistic fuzzy Metric space with example. Our result generalized and improves similar other results in literature.
基金Project(2007BAE12B00) supported by the National Key Technology R&D Program of ChinaProject(50974136) supported by the National Natural Science Foundation of China
文摘A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the active carbon shell precursor.The structures of the composites were examined by scanning electron microscopy and X-ray diffractometry.The electrochemical performance was investigated in electric double layer capacitor and half-cell.The results show that,the composite exhibits good performance in both capacitor and battery with a high reversible capacity of 306.6 mA·h/g(0.2C) in the half-cell,along with a capacitance of 25.8 F/g in the capacitor when an optimum ratio of carbonaceous mesophase spherules to active carbon is adopted.The composite also shows a favorable rate performance and good cycle ability.A working model of this anode in super lithium ion capacitors was established.
基金National Natural Science Foundation of China(Grant No.81172990)the National Key Science Research Program of China(Grant No.973 Program,2009CB930300)+1 种基金Innovation Team of Ministry of Education(Grant No.BMU20110263)the Open Project Program of State Key Laboratory of Drug Delivery Technology and Pharmacokinetics,Tianjin Institute of Pharmaceutical Research
文摘A synthetic diblock copolymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (PEOz-PLA) can self-assemble into micelles with an increased efficiency of drug delivery. However, the interactions of blood-micelles and cell-micelles remain unclear. In the present study, we aimed to assess the hemocompatibility and cytocompatibility of PEOz-PLA micelles in order to clarify its potentials as carriers for drug delivery. Blood compatibility of the micelles was evaluated by hemolysis analysis, coagulation test, platelet activation investigation and assessment of their interaction with protein. The results revealed that PEOz-PLA micelles had a favorable blood compatibility. In addition, PEOz-PLA micelles showed a good cytocompatibility through SRB assay, presenting only negligible cytotoxicity when incubated with KBv cells. Taken together, PEOz-PLA micelles could be used as a hemocompatible and cytocompatible drug carrier for intravenous administration.
基金supported by the National Natural Science Foundation of China(51401007,11472032,11120101001 and 11421202)a foundation for the author of the National Excellent Doctoral Dissertation of China(201463)+1 种基金Young Elite Scientists Sponsorship Program By CAST(2017QNRC001)the National Key Research and Development Plan(2016YFC1102203 and 2016YFC1101100)
文摘Magnesium alloys have shown prospective applications as a new biodegradable metal within bone. To garantee the longterm biocompatibility, a Mg-Zn-Ca alloy,composing of essential elements for human, was prepared and its feasibility for orthopedic applications was investigated. The in vitro and in vivo corrosion of Mg-Zn-Ca alloy as well as the biocompatibility were studied. The in vitro corrosion tests in five kinds of physiological solutions showed that the corrosion rates and corrosion morphologies of the alloy were strongly influenced by the solution used. The addition of serum in Hank’s and MEM significantly slowed down the corrosion rate and improved the corrosion uniformity of the alloy. The corrosion rate decreased with increasing serum concentration.The alloy showed the slowest corrosion rate as well as homogeneous corrosion morphology in MEM+10%FBS. Both the indirect and direct cell experiments indicated good cytocompatibility of the extruded Mg-Zn-Ca alloy. In vivo, we observed a gradual degradation process from the surface of extruded Mg-Zn-Ca alloy and only 40% in volume of implant was left after 4 weeks implantation in medullary cavities of mice. The micro-CT and histological analyses revealed its good biocompatibility with peri-implant new bone formation and increasing cortical bone thickness with increasing implantation period. This study showed that the extruded MgZn-Ca alloy provided sufficient biocompatibility for orthopedic application, though the in vivo corrosion rate should be further reduced for clinical use.
基金supported by the Scientific Research Foundation of Northwest A&F University (Z111021103, Z111021107)the National Natural Science Foundation of China (21472016, 21272030, 21476185)
文摘Ruthenium complexes which can bind to DNA via electrostatic and intercalation interactions producing strong luminescence have become ideal candidates for DNA staining. However, some of them such as Ru(phen)_3Cl_2 and Ru(phen)_2(dppz)Cl_2 could hardly cross the cellular membrane of live cells which limited their further interaction with DNA in live cells. To solve this problem, a potential approach is to find a proper vehicle for loading and delivery of these ruthenium complexes into live cells.Mesoporous silica nanoparticles(MSNs) with non-toxicity and good biocompatibility can be good candidates. More importantly,ruthenium complexes with positively charge could be loaded on negatively charged MSNs via electrostatic attractions to form MSNs-Ru hybrid. In vitro test demonstrated that MSNs had no side effects on the interactions between Ru complexes and DNA.Furthermore, it is found that the MSNs-Ru hybrid can enter into living human cervical cancer cells HeLa and stain the DNA while the corresponding ruthenium complexes alone could hardly cross the cellular membrane in the control experiment, demonstrating MSNs can be employed to be an efficient ruthenium complexes delivery nanomaterial for live cell staining.
基金the National Natural Science Foundation of China(81901048,81921002,81620108006 and 31771044)Shanghai Committee of Science and Technology,China(18410760600)the International Partnership Program of Chinese Academy of Sciences(GJHZ1850)。
文摘Forming a stable anti-corrosion surface layer on magnesium(Mg)and its alloys has become a major challenge in developing a desirable degradable medical implant in bone.In this study,a porous MgO layer was first formed on Mg by plasma electrolytic oxidation(PEO),and then a Mg-Al layered double hydroxide(LDH)layer was prepared to seal the porous structure of the PEO layer(LDH-2h and LDH-12h)via hydrothermal treatment.The bilayer structure composite coating,which can effectively resist the penetration of surrounding media,is similar to plain Chinese tiles.The in vitro results revealed that compared with other coatings,the LDH-12h composite coating can reduce the release of Mg ions and induce a milder change in pH when immersed in phosphate-buffered saline(PBS).In vitro rat bone marrow stem cell(rBMSC)culture suggested that the LDH-12h composite coating is favorable for cell activity,proliferation and could improve the osteogenic activity of rBMSCs.A subcutaneous implantation test revealed that the as-prepared sample showed enhanced corrosion resistance and histocompatibility in vivo,especially in the LDH-12h group.Moreover,LDH-12h had the lowest rate of degradation and the closest combination with the new bone after being inserted into a rat femur for 12 weeks with no major organ dysfunction.In summary,the asprepared PEO/Mg-Al LDH composite coating is able to improve the corrosion resistance and biocompatibility of Mg and to enhance osteogenic activity in vivo,suggesting its promising prospects for orthopedic applications.
基金the financial support of the National Natural Science Foundation of China(21104061,21275114,91127027,51173142)the National Basic Research Program of China(2013CB933002)the Fundamental Research Funds for the Central Universities(2013-YB-026)
文摘Chirality is a unique phenomenon in nature. Chiral interactions play an important role in biological and physiological process- es, which provides much inspiration for scientists to develop cbiral materials. As a breakthrough from traditional materials, bi- ointerface materials based on chiral polymers have attracted increasing interest over the past few years. Such materials ele- gantly combine the advantages of chiral surfaces and traditional polymers, and provide a novel solution not only for the inves- tigation of chiral interaction mechanisms but also for the design of biomaterials with diverse applications, such as in tissue en- gineering and biocompatible materials, bioregulation, chiral separation and chiral sensors. Herein, we summarize recent ad- vances in the study of chiral effects and applications of chiral polymer-based biointerface materials, and also present some challenges and perspectives.