Samples of AZ80 alloy were hot extruded at 380 ℃ and aged at temperatures of 170 ℃ and 310 ℃ respectively for different periods to compare the effect of precipitate structures on the tensile-compressive yielding as...Samples of AZ80 alloy were hot extruded at 380 ℃ and aged at temperatures of 170 ℃ and 310 ℃ respectively for different periods to compare the effect of precipitate structures on the tensile-compressive yielding asymmetry in magnesium alloy. Uniaxial tension and compression along the extruded direction were carried out at room temperature. It was found that the yielding asymmetry in the aged samples was not as significant as that in the as-extruded samples. This was because twinning occurred less readily in the aged samples. And it was also confirmed by the fact that the increment of the critical resolved shear stress (CRSS) for twinning was higher and the Schmid factor was lower in the aged samples in the presence of precipitate. Thus, it was concluded that the yielding asymmetry could be reduced and even eliminated by increasing the area fraction of the precipitate phase.展开更多
基金Project (20110309) supported by the National Natural Science Foundation of China
文摘Samples of AZ80 alloy were hot extruded at 380 ℃ and aged at temperatures of 170 ℃ and 310 ℃ respectively for different periods to compare the effect of precipitate structures on the tensile-compressive yielding asymmetry in magnesium alloy. Uniaxial tension and compression along the extruded direction were carried out at room temperature. It was found that the yielding asymmetry in the aged samples was not as significant as that in the as-extruded samples. This was because twinning occurred less readily in the aged samples. And it was also confirmed by the fact that the increment of the critical resolved shear stress (CRSS) for twinning was higher and the Schmid factor was lower in the aged samples in the presence of precipitate. Thus, it was concluded that the yielding asymmetry could be reduced and even eliminated by increasing the area fraction of the precipitate phase.