The dispersion, stabilization and rheological properties of the slurry with various relative molecular masses of PVB were studied. The sintering properties, microstructure and dielectric properties of borosilicate gla...The dispersion, stabilization and rheological properties of the slurry with various relative molecular masses of PVB were studied. The sintering properties, microstructure and dielectric properties of borosilicate glass/Al203 composites were also investigated. The intensities of the typical vibrating bands decrease with the decrease of the relative molecular mass of PVB, which demonstrates that the content of butyral groups in PVB binders decreases correspondingly, leading to a rapid decrease in the viscosity of the mixed slurry. The solid content of samples increases with the decrease of the relative molecular mass of PVB, and this further leads to the increase of tape thickness, bulk density and dried-shrinkage coefficient of tapes. The bulk density, relative density, three-point strength and dielectric constant of sintered samples increase with the increase of the solid content, and the shrinkage and dielectric loss decrease. By contrast, samples for PVB-5s exhibit better properties of a bulk density of 3.10 g/cm3, a relative density of 98.1%, a three-point strength of 208 MPa, aεt value of 8.01, a tanδ value of 7.6× 10^-4 at 10 MHz and a well matching with Ag electrodes.展开更多
A series of porous intelligent hydrogels, which exhibited appropriate lower critical solution temperature (LCST) and fast response behavior, were synthesized by radiation method. The structure and surface morphology o...A series of porous intelligent hydrogels, which exhibited appropriate lower critical solution temperature (LCST) and fast response behavior, were synthesized by radiation method. The structure and surface morphology of hydrogels were examined by the infrared radiation and the scanning electron microscopy, respectively. The influences of the content of crosslinking agent and relative molecular mass of polyethylene glycol (PEG) on the swelling properties of hydrogels were discussed. The molecular mechanics simulations were performed to investigate the phase transformation mechanism of poly(N-isopropyl acrylamide) (PNIPA) hydrogel. The results show that macropores are observed in hydrogels, whereas hydrogels prepared without using PEG have a dense surface. LCST of hydrogels increases with the increase of relative molecular mass of PEG. The swelling mechanism of PNIPA porous hydrogels follows non-Fickian diffusion model. The theoretical maximum water absorption S∞ is approximately consistent with experimental value according to the second-order kinetics model established by Schott. The molecule chains of PNIPA hydrogel begin folding and curling, resulting in volume shrinkage at 305 K. There are much intramolecular nonbonding interactions in molecule chains of hydrogels. The porous hydrogels are expected to be applied in the field of artificial intelligence material.展开更多
Accurate information on the thermal preference and specialization of species is needed to understand and predict spe- cies geographical range size and vulnerability to climate change. Here we estimate the position and...Accurate information on the thermal preference and specialization of species is needed to understand and predict spe- cies geographical range size and vulnerability to climate change. Here we estimate the position and breadth of species within thermal gradients based on the shape of the response curve of species abundance to temperature. The objective of the study is to compare the measurements of this approach based on abundance data with those of the classical approach using species' occur- rence data. The relationship between species' relative abundance and minimum winter temperature of 106 bird species wintering in the Iberian Peninsula is modeled at 100 Km2 resolution with quadratic logistic regressions. From these models we calculated the preferred temperature of species as the temperature at which the abundance is maximized, and the thermal breadth of species as the relative area under the temperature-abundance curve. We also estimated the thermal preferences and breadth of species as the average temperature and temperature range of the UTM cells in which the species are present. The abundance-temperature response curves reveal that birds prefer higher temperatures to overwinter, and are more thermally selective, than is measured by the classical approach. Moreover, response curves detect a higher inter-specific variability in both thermal preferences and ther- mal breadth of species. As occurrence data gives the same weight to cells with one or many individuals, the average temperature of the cells in which the species is present roughly reflects the average temperature in the region of study and not the environ- mental preferences of species .展开更多
基金Project(2007AA03Z455) supported by the National High Technology Research and Development Program of ChinaProjects(BE2009168)supported by Science&Technology Pillar Program of Jiangsu Province, China+2 种基金Project supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, ChinaProject(CXZZ12_0415) supported by the Innovation Foundation for Graduate Students of Jiangsu Province, ChinaProject(IRT1146) supported for Changjiang Scholars and Innovative Research Teamin University (PCSIRT) of China
文摘The dispersion, stabilization and rheological properties of the slurry with various relative molecular masses of PVB were studied. The sintering properties, microstructure and dielectric properties of borosilicate glass/Al203 composites were also investigated. The intensities of the typical vibrating bands decrease with the decrease of the relative molecular mass of PVB, which demonstrates that the content of butyral groups in PVB binders decreases correspondingly, leading to a rapid decrease in the viscosity of the mixed slurry. The solid content of samples increases with the decrease of the relative molecular mass of PVB, and this further leads to the increase of tape thickness, bulk density and dried-shrinkage coefficient of tapes. The bulk density, relative density, three-point strength and dielectric constant of sintered samples increase with the increase of the solid content, and the shrinkage and dielectric loss decrease. By contrast, samples for PVB-5s exhibit better properties of a bulk density of 3.10 g/cm3, a relative density of 98.1%, a three-point strength of 208 MPa, aεt value of 8.01, a tanδ value of 7.6× 10^-4 at 10 MHz and a well matching with Ag electrodes.
基金Project(102101210100) supported by the Key Science and Technology Project of Henan Province,ChinaProjects(2011B430023,12B430021) supported by the Natural Science Foundation of Henan Province,China
文摘A series of porous intelligent hydrogels, which exhibited appropriate lower critical solution temperature (LCST) and fast response behavior, were synthesized by radiation method. The structure and surface morphology of hydrogels were examined by the infrared radiation and the scanning electron microscopy, respectively. The influences of the content of crosslinking agent and relative molecular mass of polyethylene glycol (PEG) on the swelling properties of hydrogels were discussed. The molecular mechanics simulations were performed to investigate the phase transformation mechanism of poly(N-isopropyl acrylamide) (PNIPA) hydrogel. The results show that macropores are observed in hydrogels, whereas hydrogels prepared without using PEG have a dense surface. LCST of hydrogels increases with the increase of relative molecular mass of PEG. The swelling mechanism of PNIPA porous hydrogels follows non-Fickian diffusion model. The theoretical maximum water absorption S∞ is approximately consistent with experimental value according to the second-order kinetics model established by Schott. The molecule chains of PNIPA hydrogel begin folding and curling, resulting in volume shrinkage at 305 K. There are much intramolecular nonbonding interactions in molecule chains of hydrogels. The porous hydrogels are expected to be applied in the field of artificial intelligence material.
文摘Accurate information on the thermal preference and specialization of species is needed to understand and predict spe- cies geographical range size and vulnerability to climate change. Here we estimate the position and breadth of species within thermal gradients based on the shape of the response curve of species abundance to temperature. The objective of the study is to compare the measurements of this approach based on abundance data with those of the classical approach using species' occur- rence data. The relationship between species' relative abundance and minimum winter temperature of 106 bird species wintering in the Iberian Peninsula is modeled at 100 Km2 resolution with quadratic logistic regressions. From these models we calculated the preferred temperature of species as the temperature at which the abundance is maximized, and the thermal breadth of species as the relative area under the temperature-abundance curve. We also estimated the thermal preferences and breadth of species as the average temperature and temperature range of the UTM cells in which the species are present. The abundance-temperature response curves reveal that birds prefer higher temperatures to overwinter, and are more thermally selective, than is measured by the classical approach. Moreover, response curves detect a higher inter-specific variability in both thermal preferences and ther- mal breadth of species. As occurrence data gives the same weight to cells with one or many individuals, the average temperature of the cells in which the species is present roughly reflects the average temperature in the region of study and not the environ- mental preferences of species .