期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Poincaré-Четаев变量下非线性非完整转动相对论系统的运动方程
1
作者 乔永芬 赵淑红 《商丘师范学院学报》 CAS 2001年第4期5-11,共7页
研究Poincar啨-Четаев变量下非线性非完整转动相对论动力学系统的运动方程 .首先 ,引入Poincar啨 -Четаев变量x1,x2 ,… ,xn 及n -m个完整约束和m -l个Четаев型非完整约束 .其次 ,定义转动相对论系统的动能及加速度动... 研究Poincar啨-Четаев变量下非线性非完整转动相对论动力学系统的运动方程 .首先 ,引入Poincar啨 -Четаев变量x1,x2 ,… ,xn 及n -m个完整约束和m -l个Четаев型非完整约束 .其次 ,定义转动相对论系统的动能及加速度动能 ,然后由D′Alembert -Lagrange原理导出Chaplygin型方程、Nielsen型方程和Appell型方程 . 展开更多
关键词 Poincare-Четаев变量 非完整系统 D'Alembert-Lagrange原理 分析力学 运动方程 非线性非完整转动相对力学系统
下载PDF
相对论性力学系统的Mei对称性导致的新守恒律 被引量:13
2
作者 张毅 葛伟宽 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第4期1464-1467,共4页
研究相对论性力学系统的Mei对称性和守恒律 .基于动力学函数在无限小变换下的不变性 ,建立了相对论性力学系统的Mei对称性的定义和判据 ;直接由相对论性力学系统的Mei对称性导出了一类新守恒律 ,给出了Mei对称性导致新守恒律的条件和新... 研究相对论性力学系统的Mei对称性和守恒律 .基于动力学函数在无限小变换下的不变性 ,建立了相对论性力学系统的Mei对称性的定义和判据 ;直接由相对论性力学系统的Mei对称性导出了一类新守恒律 ,给出了Mei对称性导致新守恒律的条件和新守恒律的形式 ,并举例说明结果的应用 . 展开更多
关键词 MEI对称性 守恒律 相对论性力学系统 微分动力函数
原文传递
相对论性力学系统的Birkhoff对称性与守恒量 被引量:6
3
作者 张毅 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第21期299-304,共6页
提出了相对论性力学系统的一种新的对称性,并给出了此对称性导致的守恒量.提出了相对论性力学系统的Birkhoff对称性,即对应于相对论性力学系统的一组Birkhoff动力学函数的运动微分方程的解都满足从另一组Birkhoff动力学函数得到的运动... 提出了相对论性力学系统的一种新的对称性,并给出了此对称性导致的守恒量.提出了相对论性力学系统的Birkhoff对称性,即对应于相对论性力学系统的一组Birkhoff动力学函数的运动微分方程的解都满足从另一组Birkhoff动力学函数得到的运动微分方程.证明了与两组Birkhoff动力学函数分别给出的相对论性Birkhoff方程相关联的系数矩阵的各次幂的迹是系统的一个守恒量,从而将Currie和Saletan提出的力学系统的等效Lagrange函数定理拓展到了相对论性Birkhoff动力学系统.给出了两个例子以说明结果的正确性. 展开更多
关键词 相对论性力学系统 Birkhoff对称性 守恒量
原文传递
Algebraic Structure of the Dynamical Equations of Holonomic Mechanical System in Relative Motion 被引量:2
4
作者 张毅 梅凤翔 《Journal of Beijing Institute of Technology》 EI CAS 1998年第1期12-18,共7页
Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was... Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist . 展开更多
关键词 analytical mechanics holonomic system relative motion Lie-admissible algebra
下载PDF
Lie Symmetrical Hojman Conserved Quantity of Relativistic Mechanical System 被引量:1
5
作者 FANGJian-Hui PENGYong YANXiang-Hong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期1053-1055,共3页
In this paper, we study the Lie symmetrical Hojman conserved quantity of a relativistic mechanical system under general infinitesimal transformations of groups in which the time parameter is variable. The determining ... In this paper, we study the Lie symmetrical Hojman conserved quantity of a relativistic mechanical system under general infinitesimal transformations of groups in which the time parameter is variable. The determining equation of Lie symmetry of the system is established. The theorem of the Lie symmetrical Hojman conserved quantity of the system is presented. The above results are generalization to Hojman's conclusions, in which the time parameter is not variable and the system is non-relativistic. An example is given to illustrate the application of the results in the last. 展开更多
关键词 relativistic mechanical system lie symmetry hojman conserved quantity
下载PDF
Perturbation to Symmetries and Adiabatic Invariants of Nonholonomic Dynamical System of Relative Motion 被引量:1
6
作者 CHENXiang-Wei WANGMing-Quan WANGXin-Min 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4期577-581,共5页
Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic dynamical system of relative motion are studied. The perturbation to symmetries for the nonholo... Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic dynamical system of relative motion are studied. The perturbation to symmetries for the nonholonomic dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied. 展开更多
关键词 nonholonomic dynamical system of relative motion PERTURBATION exactinvariant adiabatic invariant
下载PDF
Mei Symmetries and Lie Symmetries for Nonholonomic Controllable Mechanical Systems with Relativistic Rotational Variable Mass 被引量:1
7
作者 XIA Li-Li LI Yuan-Cheng WANG Xian-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第6期1073-1077,共5页
The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. ... The Mei symmetries and the Lie symmetries for nonholonomic controllable mechanical systems with relativistic rotational variable mass are studied. The differential equations of motion of the systems are established. The definition and criterion of the Mei symmetries and the Lie symmetries of the system are studied respectively. The necessary and sufficient condition under which the Mei symmetry is Lie symmetry is given. The condition under which the Mei symmetries can be led to a new kind of conserved quantity and the form of the conserved quantity are obtained. An example is given to illustrate the application of the results. 展开更多
关键词 relativity rotation nonholonomic controllable mechanical system variable mass conserved quantity
下载PDF
Non-Noether Conserved Quantity for Relativistic Nonholonomic System with Variable Mass 被引量:1
8
作者 QIAOYong-Fen LIRen-Jie MAYong-Sheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2期197-200,共4页
Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differenti... Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient. condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether. conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result. 展开更多
关键词 analytical mechanics RELATIVITY nonholonomic system variable mass non-Noether conserved quantity
下载PDF
Form Invariance of Raitzin's Canonical Equations of Relativistic Mechanical System
9
作者 ZHAOShu-Hong SUNFu-Tian QIAOYong-Fen 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4期607-610,共4页
A form invariance of Raitzin's canonical equations of relativistie mechanical system is studied. First, the Raitzin's canonical equations of the system are established. Next, the definition and criterion of th... A form invariance of Raitzin's canonical equations of relativistie mechanical system is studied. First, the Raitzin's canonical equations of the system are established. Next, the definition and criterion of the form invariance in the system under infinitesimal transformations of groups are given. Finally,the relation between the form invariance and the conserved quantity of the system is obtained and an example is given to illustrate the application of the result. 展开更多
关键词 form in variance conserved quantity Raitzin's canonical equation relativistic holonomic system
下载PDF
Noether Symmetry and Noether Conserved Quantity of Nielsen Equation for Dynamical Systems of Relative Motion 被引量:1
10
作者 解银丽 杨新芳 贾利群 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第1期111-114,共4页
Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a... Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results. 展开更多
关键词 dynamics of the relative motion Nielsen equations Noether symmetry Noether conserved quantity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部