We used bovine cornea as starting material, pepsin treatment in acetic acid solution to extract the mixture of type I and V collagens, and salt precipitation and dialysis to purify and isolate each type of the collage...We used bovine cornea as starting material, pepsin treatment in acetic acid solution to extract the mixture of type I and V collagens, and salt precipitation and dialysis to purify and isolate each type of the collagens. The preparation was analyzed using sodium dodecyl sulphate polyacrylamide gel electrophoresis. 2-mercaptoethanol used as reducing agent cut off the disulfide bonds, which was utilized to analyze the structure of disulfide bonds involved between α chains in some types of collagens. At the same time, we discovered that the structure of disulfide bonds among α chains potentially existed in the type V collagen prepared from the pepsin-treatment extraction at 4℃. Through quantitative analysis, we obtained that, compared with those pepsin-treated at 4℃, the relative molecular weights of α1 (V) and α 2 (V) subunits pepsin-treated at room temperature decreased by 4.6% and 6.0%, respectively. It is concluded that type V collagen can be prepared from bovine coruea by use of pepsin treatment, salt precipitation and dialysis. The interchain and/or intermolecular disulfide bonds potentially lie near the edges of termini of type V collagen molecules existing in extracellular matrix, and there are few of the intermolecular and/or intramolecular crosslinks formed by lysine or hydroxylysine or histidine residues in type V collagen.展开更多
Lead halide perovskites have attracted extensive attention in recent years because of their excellent photoelectronic properties, such as high absorption coefficients,carrier mobilities, defect tolerances, and photolu...Lead halide perovskites have attracted extensive attention in recent years because of their excellent photoelectronic properties, such as high absorption coefficients,carrier mobilities, defect tolerances, and photoluminescence efficiencies. However, a key issue hindering their commercial application is the toxicity of lead. Replacing lead with other nontoxic elements is a promising solution to this problem.Considering their atomic radii, relative atomic masses, and electron arrangements, perovskites based on Sn, Bi, Sb, and other elements instead of Pb have been widely synthesized.Here, we summarized the growth methods, photoelectric properties, and device applications of these lead-free perovskites. First, we introduced several common growth methods for lead-free perovskites, including solution methods,solid-state reaction, and chemical vapor deposition methods.Second, we discussed the photoelectric properties and methods for optimizing these properties of lead-free perovskites with different structure dimensions. Finally, the applications of lead-free perovskites in solar cells, light-emitting diodes,and X-ray detectors were examined. This review also provides suggestions for future research on lead-free perovskites.展开更多
文摘We used bovine cornea as starting material, pepsin treatment in acetic acid solution to extract the mixture of type I and V collagens, and salt precipitation and dialysis to purify and isolate each type of the collagens. The preparation was analyzed using sodium dodecyl sulphate polyacrylamide gel electrophoresis. 2-mercaptoethanol used as reducing agent cut off the disulfide bonds, which was utilized to analyze the structure of disulfide bonds involved between α chains in some types of collagens. At the same time, we discovered that the structure of disulfide bonds among α chains potentially existed in the type V collagen prepared from the pepsin-treatment extraction at 4℃. Through quantitative analysis, we obtained that, compared with those pepsin-treated at 4℃, the relative molecular weights of α1 (V) and α 2 (V) subunits pepsin-treated at room temperature decreased by 4.6% and 6.0%, respectively. It is concluded that type V collagen can be prepared from bovine coruea by use of pepsin treatment, salt precipitation and dialysis. The interchain and/or intermolecular disulfide bonds potentially lie near the edges of termini of type V collagen molecules existing in extracellular matrix, and there are few of the intermolecular and/or intramolecular crosslinks formed by lysine or hydroxylysine or histidine residues in type V collagen.
基金Ministry of Science and Technology (2017YFA0205004, 2016YFA0200700)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36000000)+2 种基金the National Natural Science Foundation of China (61704038, 21673054, 11874130, 12074086, 61307120, 61704038 and 11474187)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (KF201902)the CAS Instrument Development Project (Y950291) for their support。
文摘Lead halide perovskites have attracted extensive attention in recent years because of their excellent photoelectronic properties, such as high absorption coefficients,carrier mobilities, defect tolerances, and photoluminescence efficiencies. However, a key issue hindering their commercial application is the toxicity of lead. Replacing lead with other nontoxic elements is a promising solution to this problem.Considering their atomic radii, relative atomic masses, and electron arrangements, perovskites based on Sn, Bi, Sb, and other elements instead of Pb have been widely synthesized.Here, we summarized the growth methods, photoelectric properties, and device applications of these lead-free perovskites. First, we introduced several common growth methods for lead-free perovskites, including solution methods,solid-state reaction, and chemical vapor deposition methods.Second, we discussed the photoelectric properties and methods for optimizing these properties of lead-free perovskites with different structure dimensions. Finally, the applications of lead-free perovskites in solar cells, light-emitting diodes,and X-ray detectors were examined. This review also provides suggestions for future research on lead-free perovskites.