针对传统粗粒度并行遗传算法容易早熟并且收敛速度较慢的不足,提出一种新的并行遗传算法。新算法采用了一种基于相对平均适应度的动态调整迁移率的方法及时增加了其它岛屿到相对平均适应度较高的岛屿的迁移率,从而有效的增加了种群的多...针对传统粗粒度并行遗传算法容易早熟并且收敛速度较慢的不足,提出一种新的并行遗传算法。新算法采用了一种基于相对平均适应度的动态调整迁移率的方法及时增加了其它岛屿到相对平均适应度较高的岛屿的迁移率,从而有效的增加了种群的多样性,抑制了早熟现象,提高了最优解的质量。同时,提出了一种存活期的计算方法,对直接迁入每个岛屿中的个体计算存活期并淘汰年龄超过存活期的个体,控制了岛屿的规模,增强了算法的收敛性能,加快了收敛速度。将提出的改进算法用Muth and Thompson基准问题测试,验证了该算法的有效性。展开更多
文摘针对传统粗粒度并行遗传算法容易早熟并且收敛速度较慢的不足,提出一种新的并行遗传算法。新算法采用了一种基于相对平均适应度的动态调整迁移率的方法及时增加了其它岛屿到相对平均适应度较高的岛屿的迁移率,从而有效的增加了种群的多样性,抑制了早熟现象,提高了最优解的质量。同时,提出了一种存活期的计算方法,对直接迁入每个岛屿中的个体计算存活期并淘汰年龄超过存活期的个体,控制了岛屿的规模,增强了算法的收敛性能,加快了收敛速度。将提出的改进算法用Muth and Thompson基准问题测试,验证了该算法的有效性。