期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
相对整体维数有限的扩张 被引量:1
1
作者 郭述锋 《数学学报(中文版)》 CSCD 北大核心 2019年第2期191-200,共10页
代数的扩张是指两个代数之间保持单位元的同态映射,设f:B→A是代数的扩张,扩张f的相对整体维数是指所有A-模的相对投射维数的上确界.我们给出了扩张的相对整体维数有限的一个充分必要条件,作为应用,还获得了Hochschild的文[Relative hom... 代数的扩张是指两个代数之间保持单位元的同态映射,设f:B→A是代数的扩张,扩张f的相对整体维数是指所有A-模的相对投射维数的上确界.我们给出了扩张的相对整体维数有限的一个充分必要条件,作为应用,还获得了Hochschild的文[Relative homological algebra, Trans. Am. Math. Soc.,1956,82:246-269]中一个结果的简洁证明. 展开更多
关键词 相对投射模 相对投射 相对整体维数
原文传递
相对Gorenstein投射模(英文) 被引量:1
2
作者 常会敏 《数学进展》 CSCD 北大核心 2017年第5期717-728,共12页
设环A是环B的扩张环,即B是与A有相同单位的A的子环.记P(A,B)是由所有相对投射模构成的范畴.对于扩张B→A,本文介绍相对Gorenstein投射模的概念.由于Gorenstein投射模与投射模具有紧密的联系,并且关于Gorenstein维数有较好的性质,本文想... 设环A是环B的扩张环,即B是与A有相同单位的A的子环.记P(A,B)是由所有相对投射模构成的范畴.对于扩张B→A,本文介绍相对Gorenstein投射模的概念.由于Gorenstein投射模与投射模具有紧密的联系,并且关于Gorenstein维数有较好的性质,本文想给出相对Gorenstein投射模和相对投射模之间类似的关系.本文主要结果是:(1)设B→A是具有相同单位的环的扩张,则由所有相对Gorenstein投射模构成的范畴是相对可解的.(2)设B→A是具有相同单位的环的扩张,若gl.dim(A,B)≤n,则每一个相对Gorenstein投射模都是相对投射的,其中gl.dim(A,B)表示所有A-模的相对投射维数的上确界. 展开更多
关键词 相对Gorenstein投射模 相对整体维数 相对可解
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部