期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
为什么1+1=2续篇 被引量:1
1
作者 李爱君 《数学学习与研究》 2015年第19期152-152,共1页
偶数能被2整除,奇数不能被2整除、奇数能被2相对整除,相对整数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5…的绝对值拥有相对整性质,为奇数能被2相对整除提供理论依据,或者说半整数拥有半整性质为奇数能被... 偶数能被2整除,奇数不能被2整除、奇数能被2相对整除,相对整数±0.5,±1.5,±2.5,±3.5,±4.5,±5.5,±6.5…的绝对值拥有相对整性质,为奇数能被2相对整除提供理论依据,或者说半整数拥有半整性质为奇数能被2半整除提供理论依据,二者完全等价,一脉相承,数学为量子力学中的半整数拥有半整性质指明正确的前进方向,量子力学的半整数为数学(算术)的相对整数拥有相对整性质提供客观证据与支持. 展开更多
关键词 1+1=2 相对整数 广义整数 广义数学真理
下载PDF
Algebraic Structure of the Dynamical Equations of Holonomic Mechanical System in Relative Motion 被引量:2
2
作者 张毅 梅凤翔 《Journal of Beijing Institute of Technology》 EI CAS 1998年第1期12-18,共7页
Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was... Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist . 展开更多
关键词 analytical mechanics holonomic system relative motion Lie-admissible algebra
下载PDF
辩证认识广义数学真理
3
作者 李爱君 《数学学习与研究》 2017年第11期160-160,共1页
偶数能被2整除,奇数不能被2整除,奇数能被2相对整除是广义数学真理;简谈潜无限、实无限的内涵,承认接受实无限数学理论千万莫排斥、丢掉了潜无限数学真理.
关键词 相对整性质 相对整数 狭义数学真理 广义整数 广义数学真理 潜无限 实无限 有限循环小数 有限不循环小数
下载PDF
Peculiar Quantum Phase Transitions and Hidden Supersymmetry in a Lipkin-Meshkov-Glick Model
4
作者 CHEN Gang LIANG Jiu-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第5期881-884,共4页
In this paper we theoretically report an unconventional quantum phase transition of a simple Lipkin- Meshkow-Glick model: an interacting collective spin system without external magnetic field. It is shown that this m... In this paper we theoretically report an unconventional quantum phase transition of a simple Lipkin- Meshkow-Glick model: an interacting collective spin system without external magnetic field. It is shown that this model with integer-spin can exhibit a flrst-order quantum phase transition between different disordered phases, and more intriguingly, possesses a hidden supersymmetry at the critical point. However, for half-integer spin we predict another flrst-order quantum phase transition between two different long-range-ordered phases with a vanishing energy gap, which is induced by the destructive topological quantum interference between the intanton and anti-instanton tunneling paths and accompanies spontaneously breaking of supersymmetry at the same critical point. We also show that, when the total spin-value varies from half-integer to integer this model can exhibit an abrupt variation of Berry phase from π to zero. 展开更多
关键词 Lipkin-Meshkov-Glick model quantum phase transition supersylnmetry
下载PDF
Form Invariance of Raitzin's Canonical Equations of Relativistic Mechanical System
5
作者 ZHAOShu-Hong SUNFu-Tian QIAOYong-Fen 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4期607-610,共4页
A form invariance of Raitzin's canonical equations of relativistie mechanical system is studied. First, the Raitzin's canonical equations of the system are established. Next, the definition and criterion of th... A form invariance of Raitzin's canonical equations of relativistie mechanical system is studied. First, the Raitzin's canonical equations of the system are established. Next, the definition and criterion of the form invariance in the system under infinitesimal transformations of groups are given. Finally,the relation between the form invariance and the conserved quantity of the system is obtained and an example is given to illustrate the application of the result. 展开更多
关键词 form in variance conserved quantity Raitzin's canonical equation relativistic holonomic system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部