A brief overview of some open questions in general relativity with important consequences for causality theory is presented, aiming to a better understanding of the causal structure of the spacetime. Special attention...A brief overview of some open questions in general relativity with important consequences for causality theory is presented, aiming to a better understanding of the causal structure of the spacetime. Special attention is accorded to the problem of fundamental causal stability conditions. Several questions are raised and some of the potential consequences of recent results regarding the causality problem in general relativity are presented. A key question is whether causality violating regions are locally allowed. The new concept of almost stable causality is introduced; meanwhile, related conditions and criteria for the stability and almost stability of the causal structure are discussed.展开更多
We propose a novel model, based on two postulates, which provide new perspective on the fundamental forces using special and general relativity concepts. Many studies address the relations between the particles and th...We propose a novel model, based on two postulates, which provide new perspective on the fundamental forces using special and general relativity concepts. Many studies address the relations between the particles and the space time manifold, and the latter's physical structure, whether it is Continuous or Discrete. In the proposed model the properties of the particles are classical in the sense of general relativity, whereas their quantum properties are arises due to the experiments.展开更多
This issue of Science China Physics, Mechanics & Astronomy celebrates the Centenary of Einstein's General Theory of Rela- tivity, which changed the way humanity understood the concepts of space, time and matter. Pri...This issue of Science China Physics, Mechanics & Astronomy celebrates the Centenary of Einstein's General Theory of Rela- tivity, which changed the way humanity understood the concepts of space, time and matter. Prior to 1915 Einstein had intro- duced his theory of Special Relativity, and Minkowski had introduced the spacetime metric. General Relativity overthrew the Newtonian idea that space, time and matter were independent, replacing it with the idea that space, time and matter are inex- tricably linked. Within a year of the publication of General Relativity came Schwartzchild's exact solution of Einstein's field equations which describes the spacetime structure of black holes. In 1916 and 1918 Einstein showed that his theory predicted the existence of gravitational waves. Within 7 years, in 1922, Friedmann published a solution for Einstein's field equations applied to a homogeneous universe, uncovering the basic physics of Big Bang cosmology.展开更多
It is first shown that the Dirac's equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 x 4 relativistic time oper...It is first shown that the Dirac's equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 x 4 relativistic time operator for spin-l/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly sma/l but non- zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli's objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.展开更多
文摘A brief overview of some open questions in general relativity with important consequences for causality theory is presented, aiming to a better understanding of the causal structure of the spacetime. Special attention is accorded to the problem of fundamental causal stability conditions. Several questions are raised and some of the potential consequences of recent results regarding the causality problem in general relativity are presented. A key question is whether causality violating regions are locally allowed. The new concept of almost stable causality is introduced; meanwhile, related conditions and criteria for the stability and almost stability of the causal structure are discussed.
文摘We propose a novel model, based on two postulates, which provide new perspective on the fundamental forces using special and general relativity concepts. Many studies address the relations between the particles and the space time manifold, and the latter's physical structure, whether it is Continuous or Discrete. In the proposed model the properties of the particles are classical in the sense of general relativity, whereas their quantum properties are arises due to the experiments.
文摘This issue of Science China Physics, Mechanics & Astronomy celebrates the Centenary of Einstein's General Theory of Rela- tivity, which changed the way humanity understood the concepts of space, time and matter. Prior to 1915 Einstein had intro- duced his theory of Special Relativity, and Minkowski had introduced the spacetime metric. General Relativity overthrew the Newtonian idea that space, time and matter were independent, replacing it with the idea that space, time and matter are inex- tricably linked. Within a year of the publication of General Relativity came Schwartzchild's exact solution of Einstein's field equations which describes the spacetime structure of black holes. In 1916 and 1918 Einstein showed that his theory predicted the existence of gravitational waves. Within 7 years, in 1922, Friedmann published a solution for Einstein's field equations applied to a homogeneous universe, uncovering the basic physics of Big Bang cosmology.
基金supported in part by Research Deputy of Sharif University of Technology over a sabbatical visit, hosted by the Laboratory of Photonic and Quantum Measurements (LPQM) at EPFL
文摘It is first shown that the Dirac's equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 x 4 relativistic time operator for spin-l/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly sma/l but non- zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli's objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.