A field study on the behavior of three destructive piles in soft soils subjected to axial load was presented.All the three piles with different diameters were base-grouted and installed with strain gauges along the pi...A field study on the behavior of three destructive piles in soft soils subjected to axial load was presented.All the three piles with different diameters were base-grouted and installed with strain gauges along the piles.The complete load transfer behavior of the base-grouted pile was analyzed using measured results.Moreover,the thresholds of the relative pile-soil displacement for fully mobilizing skin frictions in different soils were investigated,and pile tip displacements needed to fully mobilize tip resistances were analyzed.The results of the full-scale loading tests show that the skin frictions are close to the ultimate values when the pile-soil relative displacements are 1%-3% of pile diameter,and the pile tip displacements needed to fully mobilize the tip resistances are about 1.3%-2.0% of pile diameter.The load transmission curve of the soils around the pile tip corresponds to a softening model when the pile is loaded to failure.展开更多
In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences o...In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.展开更多
基金Project(51078330) supported by the National Natural Science Foundation of China
文摘A field study on the behavior of three destructive piles in soft soils subjected to axial load was presented.All the three piles with different diameters were base-grouted and installed with strain gauges along the piles.The complete load transfer behavior of the base-grouted pile was analyzed using measured results.Moreover,the thresholds of the relative pile-soil displacement for fully mobilizing skin frictions in different soils were investigated,and pile tip displacements needed to fully mobilize tip resistances were analyzed.The results of the full-scale loading tests show that the skin frictions are close to the ultimate values when the pile-soil relative displacements are 1%-3% of pile diameter,and the pile tip displacements needed to fully mobilize the tip resistances are about 1.3%-2.0% of pile diameter.The load transmission curve of the soils around the pile tip corresponds to a softening model when the pile is loaded to failure.
基金Project(51308549)supported by the National Natural Science Foundation,China
文摘In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.