The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayl...The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.展开更多
The rebound behaviors of droplets impacting on a self-fabricated superhydrophobic brass surface (WCA=I64.5°) were ob- served and studied by using high-speed-camera. In accordance with energy conversion, theoret...The rebound behaviors of droplets impacting on a self-fabricated superhydrophobic brass surface (WCA=I64.5°) were ob- served and studied by using high-speed-camera. In accordance with energy conversion, theoretical analysis of different behav- iors and rebound mechanism were given. At lower velocities, three behaviors in different velocity ranges were observed: par- tial rebounding, entire rebounding and ejecting during rebounding. At higher velocities, such two behaviors as rebound after splashing and rebound, ejecting after splashing, occurred alternately and exhibited certain periodicity. A function to predict the critical impact velocity is derived from energy conservation condition, and the prediction values tally with the experimental values, with the maximum relative error about 14%.展开更多
基金Project(51275530)supported by the National Natural Science Foundation of China
文摘The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.
基金supported by The National Natural Science Foundation of China (Grant No.51109178)Science and Technology Innovation Foundation of NWPU (Grant No.JC20120218)
文摘The rebound behaviors of droplets impacting on a self-fabricated superhydrophobic brass surface (WCA=I64.5°) were ob- served and studied by using high-speed-camera. In accordance with energy conversion, theoretical analysis of different behav- iors and rebound mechanism were given. At lower velocities, three behaviors in different velocity ranges were observed: par- tial rebounding, entire rebounding and ejecting during rebounding. At higher velocities, such two behaviors as rebound after splashing and rebound, ejecting after splashing, occurred alternately and exhibited certain periodicity. A function to predict the critical impact velocity is derived from energy conservation condition, and the prediction values tally with the experimental values, with the maximum relative error about 14%.