Laser phase noise (LPN) plays an important role in optical coherent systems. Based on the algorithm of Viterbi-Viterbi cartier phase estimation (CPE), the effects of LPN imposed on the coherent receivers are inves...Laser phase noise (LPN) plays an important role in optical coherent systems. Based on the algorithm of Viterbi-Viterbi cartier phase estimation (CPE), the effects of LPN imposed on the coherent receivers are investigated for quadrature phase shift keying (QPSK), 8 phase shift keying (SPSK) and 16-quadrature amplitude modulation (16-QAM) optical coherent systems, respectively. The simulation results show that the optimal block length in the phase estimation algorithm is a tradeoffbetween LPN and additive white Gaussian noise (AWGN), and depends on the level of modulation formats. The resolution requirements of analog to digital converter (ADC) in the coherent receivers are independent of LPN or the level of modulation formats. For the bit error rate (BER) of 10-3, the required bit number of ADC is 6, and the gain is marginal for the higher resolution.展开更多
基金supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.11JK1006)
文摘Laser phase noise (LPN) plays an important role in optical coherent systems. Based on the algorithm of Viterbi-Viterbi cartier phase estimation (CPE), the effects of LPN imposed on the coherent receivers are investigated for quadrature phase shift keying (QPSK), 8 phase shift keying (SPSK) and 16-quadrature amplitude modulation (16-QAM) optical coherent systems, respectively. The simulation results show that the optimal block length in the phase estimation algorithm is a tradeoffbetween LPN and additive white Gaussian noise (AWGN), and depends on the level of modulation formats. The resolution requirements of analog to digital converter (ADC) in the coherent receivers are independent of LPN or the level of modulation formats. For the bit error rate (BER) of 10-3, the required bit number of ADC is 6, and the gain is marginal for the higher resolution.